蔡润夏

副教授

所在系所:热能工程研究所

电子邮件:cairx@sjtu.edu.cn

通讯地址:上海市闵行区东川路800号机械楼A楼327室

个人主页:目前招收博士后、博士生、硕士生及本科生!(详见研究方向)欢迎具有工程热物理、化工、材料等相关背景同学加入课题组开展研究!

个人简介
教学工作
科研工作
指导学生
荣誉奖励

教育背景

20148~20201月,清华大学能源与动力工程系,工学博士
2010
8~20147月,清华大学热能工程系,工学学士
2012
8~20147月,清华大学经济与管理学院,经济学学士(第二学位)

工作经历

20204~202310月,美国北卡罗来纳州立大学化学与生物分子工程系,博士后研究员
2023
11~至今,suncitygroup太阳集团,长聘教轨副教授

研究方向

本课题组紧密围绕国家碳中和、碳达峰战略目标及能源产业升级的重大需求,聚焦气固反应系统中能量与物质传递及转化的多尺度关键问题,开展基础理论研究与关键技术攻关。针对能源清洁利用与低碳转化领域的前沿挑战,我们以颗粒材料反应器流程工艺为研究思路,重点开展高性能颗粒材料开发、反应系统优化设计及多尺度数值模拟等方面研究,推动在生物质制氢气、空气分离制氧气、热化学储热、CO₂捕集利用、清洁发电等领域的工程应用。


主要研究方向:

1.      高性能颗粒材料的开发与表征:

研发具备氧载体或碳载体功能的高效催化剂和吸收剂颗粒材料,并利用先进的表征技术,研究其在化学链反应过程中的性能优化及演变规律。


2.      气固反应系统的优化与设计:
依托固定床、鼓泡床、循环流化床等多相反应器实验平台,结合光纤探针等先进气固流动测量技术,优化反应器结构与操作条件,以提升整体系统性能和反应效率。


3.      反应动力学与反应器多尺度数值模拟:
基于BarracudaAnsys Fluent等商用软件及自编代码,开展反应器的多尺度模拟与优化研究,提高系统运行效率与稳定性。同时,利用密度泛函理论计算和人工智能分析颗粒材料的热力学特性及反应机理,为材料优化提供支撑。


***每年招收博士2名,硕士2名,欢迎感兴趣的本科生、硕士生、博士生、博士后联系。

***现与宁波东方理工大学谭忠超教授(加拿大院士)合作招收博士后,待遇从优,欢迎具有工程热物理、化工、材料等方向的博士联系。年薪不低于30万元(税前),具体额度由导师及本人协商确定。支持博士后在站期间申请国家和省市级博士后人才计划和研究项目,提供良好的科研条件和充足稳定的经费支持。




学术兼职

1.       《煤炭转化》期刊青年编委。

2.       2024年第14届国际流化床技术会议分会场主席

3.       2023 年美国化学工程师( AIChE)年会分会场主席流态化过程实验与数值模拟研究分会场

4.       2022 年美国化学工程师( AIChE)年会分会场共同主席流态化过程实验与数值模拟研究分会场。

5.       2022 年第五届循环流化床锅炉国际会议助理委员会成员兼分会场主席

6.       2023-至今,Processes 期刊“Modeling and Optimization of Gas-Solid Reaction Vessels”客座编辑

7.       2022  9 月, Energies 期刊洁净燃烧与能质储存转化发展现状及展望专题研讨会邀请报告

8.       2020 11月,第三届循环流化床锅炉国际会议青年论坛主席

9.       Journal of Cleaner Production, Fuel Processing Technology, Fuel, Advanced Powder Technology, Energies等期刊审稿人



《学术写作、规范与伦理》(英文留学生班)

科研项目

主持项目

2025~2027 国家级高层次青年人才计划项目

2024~2026 ,上海交通大学双一流建设项目

 

主要参与

2021~2025,美国能源部基金,Renewable Natural Gas from Carbonaceous Wastes via Phase Transition CO2/O2 Sorbent Enhanced Chemical Looping Gasification
2019~2022
,美国能源部基金,Radically Engineering Modular Air Separation System with Tailored Oxygen Sorbents
2018~2022
RAPID InstituteModular Conversion of Stranded Ethane to Liquid Fuels
2016~2020
,国家重点研发计划,660MW高效超超临界循环流化床锅炉关键技术研究
2017~2019,   
韩国南部电力集团国际合作韩国三陟电厂改善炉内脱硫效率的模型研究
2017~2018
,东锅横向,外置式换热器冷态试验及数值模拟
2017~2019
,山西重大专项,第三代超低排放循环流化床锅炉技术开发及工程示范

代表性论文专著

[1] R Cai#, K Yang#, X Wang#, et al. High-throughput design of complex oxides as isothermal, redox-activated CO2 sorbents for green hydrogen generation. Energy & Environmental Science, 2024.
[2] R Cai#, E Krzystowczyk#, B Braunberger, et al. Techno-economic analysis of chemical looping air separation using a perovskite oxide sorbent. International Journal of Greenhouse Gas Control. 2024, 132: 104070.
[3] R Cai, L Brody, Y Tian, et al. Numerical modeling of chemical looping oxidative dehydrogenation of ethane in a packed bed reactor. Chemical Engineering Journal, 2023, 469: 143930.
[4] R Cai#, H Bektas#, X Wang#, et al. Accelerated perovskite oxide development for thermochemical energy storage by a high-throughput combinatorial approach. Advanced Energy Materials, 2023, 2203833.
[5] R Cai, J Dou, E Krzystowczyk, et al. Chemical looping air separation with Sr0. 8Ca0. 2Fe0. 9Co0. 1O3-δ perovskite sorbent: Packed bed modeling, verification, and optimization. Chemical Engineering Journal, 2022, 429: 132370.
[6] R Cai, B Deng, X Tao, et al. Effects of horizontal tube arrays on heat transfer in an external heat exchanger. Applied Thermal Engineering, 2020, 181: 115964.
[7] R Cai, X Ke, Y Huang, et al. Applications of ultrafine limestone sorbents for the desulfurization process in CFB boilers. Environmental Science & Technology, 2019, 53(22): 13514-13523.
[8] R Cai, Y Huang, Y Li, et al. Effects of the limestone particle size on the sulfation reactivity at low SO2 concentrations using an LC-TGA. Materials, 2019, 12, 1496.
[9] R Cai, M Zhang, R Ge, et al. Experimental study on local heat transfer and hydrodynamics of a single tube and tube bundles in an external heat exchanger. Applied Thermal Engineering, 2019, 149: 924-938.
[10] R Cai, M Zhang, X Mo, et al. Experimental research on the unstable performances of parallel external loops in the circulating fluidized bed. Chemical Engineering Research and Design, 2018, 139: 1-11
[11] R Cai, H Zhang, M Zhang, et al. Development and application of the design principle of fluidization state specification in CFB coal combustion, a review. Fuel Processing Technology, 2018, 174: 41-52.
[12] R Cai, M Zhang, X Mo, et al. Operation characteristics of external heat exchangers in the 600MW supercritical CFB boiler. Fuel Processing Technology, 2018, 172: 65-71.
[13] M Rukh#R Cai#, L Brody, et al. Isothermal CO2 separation enabled by redox-active mixed oxide sorbents. Chemical Engineering Journal, 2024, 501: 157545. (Equal contribution)
[14] D Li#R Cai#, Ahn S#, et al. Hydrodynamics in the transport zone of a large-scale circulating fluidized bed boiler[J]. Powder Technology, 2022: 118099. (Equal contribution)
[15] L Brody#R Cai#, A Thornton, et al. Perovskite-based phase transition sorbents for sorption-enhanced oxidative steam reforming of glycerol. ACS Sustainable Chemistry & Engineering, 2022, 10, 19, 6434–6445. (Equal contribution)
[16] D Li#R Cai#, H Yang, et al. Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler. Energy, 2020, 192: 116503. (Equal contribution)
[17] R Cai, X Ke, J Lyu, et al. Progress of circulating fluidized bed combustion technology in China: a review. Clean Energy, 2017, 1(1): 36-49.
[18] 
蔡润夏李凡星复杂氧化物载氧体的调变策略及在过程强化中的应用化工学报, 2021, 72(12): 6122-6130.
[19] 
蔡润夏吕俊复张缦等超超临界循环流化床锅炉流化床换热器热偏差形成的流动基础锅炉技术, 2019, 50(04): 34-39+55.
[20] 
蔡润夏黄逸群程璐等石灰石煅烧与硫化条件下磨耗特性研究化工学报, 2019, 70(8): 3086-3093.
[21] 
蔡润夏柯希玮葛荣存等.循环流化床超细石灰石炉内脱硫研究中国电机工程学报, 2018, 38(10): 3042-3048+3155
[22] 
蔡润夏吕俊复凌文等()临界循环流化床锅炉技术的发展中国电力, 2016, 49(12): 1-7
[23] H Bektas, R Cai, L Brody, et al. Structural and thermodynamic assessment of Ba and Ba/Mg substituted SrFeO3−δ for “low-temperature” chemical looping air separation. Energy & Fuels, 2024.
[24] S Chen, R Cai, Zhang Y, et al. A semi-empirical model to estimate the apparent viscosity of dense, bubbling gas-solid suspension. Powder Technology, 2021, 377: 289-296.
[25] Y Li, R Cai, M Zhang, et al. Characterization of the sulfation reactivity of limestones with different particle size in a large-capacity TGA. Fuel, 2020, 271: 117292.
[26] Y Yao, R Cai, Y Zhang, et al. A method to measure the tube-wall temperature in CFB boilers. Applied Thermal Engineering, 2019, 153: 493-500.
[27] X Ke, R Cai, M Zhang, et al. Application of ultra-low NOx emission control for CFB boilers based on theoretical analysis and industrial practices. Fuel Processing Technology, 2018, 181: 252-258.
[28] G Yue, R Cai, J Lu, et al. From a CFB reactor to a CFB boiler–the review of R&D progress of CFB coal combustion technology in China. Powder Technology, 2017, 316: 18-28. 
(导师一作)
[29] X Mo, R Cai, X Huang, et al. The effects of wall friction and solid acceleration on the mal-distribution of gas–solid flow in double identical parallel cyclones. Powder Technology, 2015, 286: 471-477.
[30] L Brody, M Rukh, R Cai, et al. Sorption-enhanced steam reforming of toluene using multifunctional perovskite phase transition sorbents in a chemical looping scheme. Journal of Physics: Energy, 2023.
[31] X Wang, Y Gao, E Krzystowczyk, S Iftikhar, J Dou, R Cai, et al. High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications. Energy & Environmental Science, 2022, 15(4), 1512-1528.
[32] I Wang, Y Gao, X Wang, R Cai, et al. Liquid metal shell as an effective iron oxide modifier for redox-based hydrogen production at intermediate temperatures. ACS Catalysis, 2021, 11(16): 10228-10238.
[33] X Ke, M Engblom M, L Cheng, L Chen, R Cai, et al. Modeling and experimental investigation on the fuel particle heat-up and devolatilization behavior in a fluidized bed. Fuel, 2021, 288: 119794.
[34] D Li, M Zhang, M Kim, R Cai, et al. Limestone attrition and product layer development during fluidized bed sulfation. Energy & Fuels, 2020, 34(2): 2117-2125.
[35] X Ke, D Li, M Zhang, C Jeon, R Cai, et al. Ash formation characteristics of two Indonesian coals and the change of ash properties with particle size. Fuel Processing Technology, 2019, 186: 73-80..
[36] 
聂立蔡润夏鲁佳易等循环流化床外置换热器壁温偏差改进措施浙江大学学报(工学版), 2021, 55(03): 578-585.
[37] 
陶欣蔡润夏陈陆剑等烧结烟气气氛下煤燃烧特性热重实验研究热力发电, 2020, 49(07):55-60
[38] 
柯希玮蔡润夏吕俊复等钙基脱硫剂对循环流化床NOx排放影响研究进展.洁净煤技术,2019,25(01): 1-11.
[39] 
张缦蔡润夏姜孝国等. 660 MW高效超超临界双炉膛循环流化床锅炉的设计开发动力工程学报, 2018, 38(05):341-346.
[40] 
柯希玮蔡润夏杨海瑞等循环流化床燃烧的NOx生成与超低排放中国电机工程学报, 2018, 38(02): 390-396+669.
[41] 
柳成亮蔡润夏吕俊复等燃用劣质煤大型循环流化床锅炉超低排放技术研究与应用中国电力,2018, 51(8): 1-6.
[42] 
莫鑫蔡润夏吕俊复等基于返料灰温偏差的600MW(e)循环流化床锅炉内气固不均匀分布中国电机工程学报, 2016, 36(08): 2175-2180.
[43] 
莫鑫蔡润夏吕俊复等. 600MWe超临界循环流化床锅炉的运行特性锅炉技术, 2016, 47(04):34-38.
[44] 
汪佩宁蔡润夏柳成亮等. 300MWe节能型循环流化床锅炉的设计与运行沈阳工程学院学报(自然科学版), 2016, 12(04): 308-313.
[45] 
葛荣存张贤蔡润夏流化床选择性排渣的实验研究煤炭学报, 2018, 43(04): 1134-1139.
[46] 
张贤葛荣存蔡润夏连续进出料CFB密相区中颗粒横向运动行为模拟研究中国电机工程学报, 2018, 38(02): 413-420+672.
[47] 
史航李强蔡润夏循环灰作为固体吸附剂脱除高温烟气中碱金属蒸汽研究煤炭学报, 2016, 41(10): 2527-2532.
[48] 
葛荣存汪达张贤蔡润夏鼓泡流化床排渣流动的模拟与实验研究煤炭学报, 2017, 42(S2): 486-493.

 


软件版权登记及专利

[1]. 蔡润夏张缦吕俊复等一种循环流化床锅炉炉内脱硫方法[P]. 北京:CN107596878A, 2018-01-19.
[2]. 
蔡润夏张缦吕俊复等一种循环流化床锅炉外置换热床[P]. 北京:CN206724147U, 2017-12-08.
[3]. 
柯希玮蔡润夏吕俊复等一种实现循环流化床锅炉NOx超低排放的方法[P]. 北京:CN108105759A, 2018-06-01.
[4]. 
柯希玮蔡润夏张海等一种降低锅炉烟气中NO排放的方法[P]. 北京:CN107570004A, 2018-01-12.
[5]. 
柯希玮蔡润夏张海等一种减少烟气中NOx含量的催化剂金属受热面及其制备方法[P]. 北京:CN107398283A, 2017-11-28.
[6]. 
吕俊复柯希玮蔡润夏等吸附脱硝循环流化床锅炉及其运行方法[P]. 山西:CN107238093A, 2017-10-10.
[7]. 
张贤葛荣存蔡润夏等一种循环流化床锅炉的片状阶梯型布风装置[P]. 北京:CN107036085A, 2017-08-11.


博士
李明柽
2024
王彬皓
2025
硕士
赵天乐
2024
陈明艺
2024
杨秋瑞
2025

2025  机动学院优秀本科生班主任

2024  国家高层次青年人才计划

2024  上海市白玉兰人才计划

2022  AIChE年会催化与反应工程分会墙报展示第一名
2022  Energies期刊旅行奖(博士后仅一人)
2021  第六届中国科协优秀科技论文奖
2020  中国颗粒学会科技进步一等奖(排名5)
2020  中国电力科技创新一等奖(排名10)
2020  北京市优秀毕业生
2019  第二届国际循环流化床锅炉会议最佳论文奖
2018  清华大学蒋震一等奖学金
2017  清华大学社会工作单项奖学金
2016  清华大学三星级志愿者
2014  北京市优秀毕业生
2012  国家奖学金