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Advance Scheduling for Chronic Care Under
Online or Offline Revisit Uncertainty
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Abstract— Chronic disease patients often require revisits for
long-term care. Online medical services shift revisits to online,
which can improve the access to chronic care and reduce the
burden on offline medical services. However, whether Internet
healthcare can truly match the medical supply and demand, one
of the critical issues is the efficient advance scheduling of the
integrated online and offline systems. This study investigates the
advance scheduling problem for the first visit and revisit patients
in chronic care. The uncertainty of revisit status (i.e., online or
offline) and heterogeneity of online and offline revisits (i.e., revisit
interval, continuity of care violation penalty) are considered.
A stochastic mixed-integer programming model is formulated for
assigning patients to a specific physician on a specific day over
the course of a finite planning period. The aim is to minimize
the expected sum of three cost components related to offline
and online services: overtime and idle time, continuity of care
violation penalty, and fixed setup. This study proposes a modified
progressive hedging algorithm and applies a sequential decision-
making framework to obtain rolling time advance schedules.
Results of the numerical analysis demonstrate the effectiveness
of our algorithm compared to both the published state-of-the-art
Lagrangian decomposition embedded with surrogate subgradient
method and the commercial solver Gurobi. The insight obtained
from the experiments is that a capacity allocation scheme with
all physicians assigned with both offline and online capacities
would be a good choice for considerable cost savings.

Note to Practitioners—Internet healthcare is becoming
increasingly popular. Operation and management issues have
arisen in the integrated online and offline appointment systems.
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A sequential decision-making method embedded with a stochastic
programming model and a modified PHA is proposed to help
decision-makers generate the first visit and revisit advance
schedules for chronic care. The performance of this approach and
the system is thoroughly verified. Results show that the developed
decision technique can lessen the operational cost generated
by scheduling and realize the goal of continuity of care. This
study offers a useful tool to help with intelligent patient advance
scheduling in an integrated management system of online and
offline chronic care.

Index Terms— Patient advance scheduling, online and
offline healthcare, progressive hedging, chronic care, stochastic
programming.

I. INTRODUCTION

INTERNET hospitals are playing an increasingly important
role in serving patients seeking medical treatment and

medicine. Since the outbreak of the Coronavirus disease
2019 in Shanghai in 2022, over 100 Internet hospitals in
the city, have provided convenient services online, including
specialist consultation, revisit consultation, and prescription.
The total volume of Internet services in the city has increased
significantly at an average of about 50%–80% [1]. Internet
hospitals alleviate the contradiction between the supply and
demand of medical services. They can divert patient demand
and relieve the pressure of offline hospital services. At the
same time, the rise of Internet medical care has also greatly
improved the efficiency and effectiveness of chronic disease
management. According to the research data of a tertiary
hospital [2], after using a diabetes management smart medical
platform, the average hospital stay of inpatients was reduced
by 3.6 days, and the average blood sugar compliance time
was decreased by 1.3 days. Despite the observed benefits of
Internet healthcare in chronic care, various ambiguities occur
in intelligent scheduling of the integrated online and offline
medical systems.

This study is motivated by one of our investigated hospitals
that provide both online and offline services. In chronic
disease management, the hospital practitioners struggle with
generating efficient schedules in advance with fewer costs.
Their current practice is to arrange appointments separately
for the first visit and revisit patients. After the first visit,
the patients are not scheduled for revisits until the diagnosis
information of the first visit is obtained. At this point, service
capacity is highly occupied by the demands of the first
visit patients who were scheduled before the current decision
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point. Thus, physicians often work overtime or returning
patients face delayed treatments. The hospital has difficulties
in guaranteeing to promptly serve returning patients within
the medically required interval. Hence, we investigate the
advanced scheduling problem for chronic care in the integrated
online and offline medical systems.

Moreover, even in existing literature, assigning patients
to future appointment days during a multi-day schedul-
ing window is typically considered as a difficult man-
agerial issue. Advance scheduling has wide and varied
application areas, including the arrangement for diag-
nostic procedures such as Magnetic Resonance Imaging
or Computed Tomography scans [3], [4], [5], [6], [7],
radiotherapy, physical therapy, treatment scheduling [8], [9],
primary care clinics [10], [11], [12], [13], and surgical
scheduling [14], [15], [16], [17], [18], [19], [20], [21].
The most common approach used to formulate the
advance scheduling problem is the Markov decision process
(MDP) [4], [5], [6], [7], [8], [9], [13], [14], [22], [23], [24],
[25]. However, high-dimensional state and action spaces
make exact solution methods intractable. Such problem is
addressed using different approaches, such as policy iteration
algorithm [9], [14] and approximate dynamic programming
(ADP) [4], [26]. Unlike the above studies, Dai et al. [13]
established the structural properties of the finite-horizon MDP
model and optimal scheduling policy, as well as designed
two efficient heuristic policies from the theoretical results.
Mathematical programming approaches are also applied to
formulate advance scheduling problems [15], [16], [18], [19],
[20], [21]. The majority of the aforementioned papers consider
uncertainties and use various techniques to solve the stochastic
model, including the scenario-based approach sample average
approximation (SAA) [17], [20], [21], distributionally robust
optimization [15], [19], and robust optimization [27]. As far
as we know, the present study is the first work to build an
advance scheduling model that contributes to chronic disease
management from an operational perspective. Our model
considers the three-pronged nature of the hybrid online and
offline services system. The model addresses the uncertainty of
online or offline revisit status while also ensures the continuity
of care for patients by assigning them to a specific physician
on a specific day. We consider online and offline revisit patient
heterogeneity in their revisit intervals and continuity of care
violation penalties. Additionally, we use a modified version of
the progressive hedging algorithm (PHA) based on a stochastic
problem structure to search for near-optimal chronic care
schedules.

A few studies have focused on the advance scheduling
problem considering revisits. As an illustration of work
in this field, a dynamic model is developed by Sauré
et al. [8] for scheduling radiation therapy patients with multiple
appointments. Patients are assumed to have a constant number
of appointments at their initial appointment. The studies by
Yu et al. [9], Bayram et al. [28], and Yu and Bayram [29]
are most closely related to our research. Considering a
patient’s random number of visits and a constant interval
in between, Yu et al. [9] prepared schedules for a series of
appointments. The difference of our study is that we consider

two groups of revisited patients from both online and offline.
To maximize aggregate health benefits, Bayram et al. [28]
determined which patients must be scheduled for office and
virtual appointments by building a finite horizon stochastic
dynamic program. Yu and Bayram [29] used a migration
network to model chronic new and returning patients’ flow,
making decisions to allocate the capacity of office and virtual
appointments to maximize long-run average earnings. In both
cases [28], [29], the authors decided whether a patient receives
care online or offline. However, we consider the online or
offline status of revisits in a stochastic manner. In addition,
to ensure continuity of care, we define decision variables
that introduce physician subscription to set soft constraints,
which differentiates our modeling approach from those of the
abovementioned research.

One of the popular techniques for solving large-scale
stochastic mixed-integer programming problems is the decom-
position method. The optimization method PHA used in this
study is under the umbrella of Lagrangian decomposition (LD)
which is a specific instance of Lagrangian relaxation. LD was
first proposed by Carøe and Schultz [33], and the idea behind
LD is splitting the original problem into smaller scenario
subproblems by relaxing non-anticipativity constraints and
finding the optimal dual multipliers to solve the problem.
Since then, many pieces of literature have further studied
LD. This method has been widely applied in practice and
innovatively developed in theory, which is mainly reflected in
combining other methods to form a new integration method.
For instance, a recent application of ambulance relocation and
routing under stochastic demand is presented in [34], where
an algorithm composed of the Lagrangian dual decomposition
and branch-and-bound is developed to accelerate the solution
time. Escudero et al. [35], [36], [37], [38] investigate the
Lagrangian relaxation application in solving multistage
stochastic mixed programs with risk-averse measures and
enrich traditional LD by developing scenario cluster approach,
scenario cluster submodels optimization, and Lagrangian
multipliers updating schemes. A LD method is proposed that
combines cutting planes and subgradient methods in [39].
Lara et al. [40] consider a temporal fixed-charge flow problem
in transportation applications and propose a new algorithm
that composes balanced graph partitioning, LD, and a linear
programming filtering heuristic. Zeighami et al. [41] develop
a new hybrid approach integrating alternating LD, column
generation, and dynamic constraint aggregation to address the
integrated crew pairing and personalized assignment problems
in airline applications. Zhang et al. [42] address a rail traffic
real-time optimization problem for collaborative decisions
of train rescheduling and track emergency maintenance
and develop a Lagrangian relaxation based decomposition
algorithm. Amiri and Barkhi [43] propose a Lagrangian
relaxation based method to solve the multiple knapsack
problem with setups. A thorough review of the Lagrangian
relaxation method can be referred to [44].

The main contributions of the present study are summarized
as follows. First, we study the advance scheduling problem
for chronic care with first and revisit patients that explicitly
considers the uncertainty and heterogeneity of online and
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offline revisits, such as revisit interval and continuity of care
violation penalty. To the best of our knowledge, this study is
the first to establish a chronic care advance scheduling model
with first and revisits in integrated online and offline systems.
Second, in a sequential decision framework, a stochastic mixed
integer programming model is constructed and a modified
PHA is developed. Penalty update and Lagrangian multiplier
update methods are proposed, which consider the convergence
behavior of the variable values. Numerical results indicate
that our method performs better than the state-of-the-art
Lagrangian decomposition approaches and the commercial
solver Gurobi. The proposed modified PHA can obtain
satisfied solutions in a relatively quite short time particularly
for these large scale instances of the problems. Finally,
managerial insights for guiding practice are observed through
numerical studies. For example, when the patient volume is
large, the allocation scheme with all physicians assigned for
both offline and online capacities is highly recommended for
better performance.

The remainder of this paper is structured as follows.
The problem description and the sequential stochastic mixed
integer programming model are presented in Section II.
Section III presents the solution approach. In Section IV, our
numerical experiments are performed and managerial insights
are drawn. Discussions of our findings, their shortcomings, and
possible future research directions are also provided. Finally,
Section V provides the conclusions.

II. PROBLEM FORMULATION

In this section, we describe the advance scheduling problem
considering chronic patients with both first visit and revisit
in offline and online care. A sequential stochastic mixed-
integer programming model is developed for this problem.
Then, we analyze the complexities of the model.

A. Mathematical Model

For chronic healthcare services of diabetes, cardiovascular
disease, high blood pressure, Alzheimer’s disease, and asthma,
patients need revisits to receive long-term treatment and
constant monitoring of their health status. We consider the
hybrid offline and online advance scheduling problem for first
visit and revisit patients suffering from chronic diseases. The
first K days are denoted as the arrival horizon, indexed by
k ∈ K = {1, 2, . . . , K }. In this study, the terms “period”
and “day” are used interchangeably. In each period k of
the horizon, first visit patients come to make appointment
requests on future days. Since the first visit generally requires
diagnostic tests, we assume that all first visits are served at
the offline hospital. The first visit patients that require revisits
(FV with RV) are denoted by i1 ∈ I1 = {1, 2, . . . , I1}.
The remaining first visit patients are those who leave the
system after the first visit to complete treatment without a
revisit (FV without RV), denoted by i2 ∈ I2 = {1, 2, . . . , I2}.
These two types of patients have to be given the first
appointment on day l ∈

{
k + 1, k + 2, . . . , k + M1} and day

l ∈
{
k + 1, k + 2, . . . , k + M2}, respectively, where M1 and

M2 are two given positive integers, called their appointment
Maximum Wait Time Targets (MWTTs).

We consider the uncertainties of patient’s revisit status
(i.e., online or offline) because of its dependence on
the physician’s diagnosis and patient’s specific conditions.
Patients with chronic disease-related diagnoses, long-term
medication, and stable conditions are recommended to undergo
online follow-up consultation, and patients with unclear or
changing conditions are recommended for offline follow-up
consultation. The definition of the scenario and the underlying
assumption of the rule we used to generate scenarios are
now described. For each FV with RV i1 = 1, . . . , I1, the
random variable of the revisit access status Q ∈ {0, 1}

follows the Bernoulli distribution with a parameter pi1 . That is,
Q ∼ B(pi1). A scenario s for the FV with RV contains revisit
access information about that patient i1 receives returning care
online or offline qi1 (e.g., qi1 = 1 represents online, and
qi1 = 0 represents offline). qi1 is a realization of Q, and the
index set of scenarios is denoted by S : = {s}. In addition, the
revisit interval of patient i1 depending on revisit status, M3

i1

(positive integer), is defined and restricted to ao
≤ M3

i1
≤ ao

for revisits offline and ae
≤ M3

i1
≤ ae for online.

Set J = {1, 2, . . . , J } represents the set of physicians and
c j t is the total capacities of physician j ∈ J available in day
t . Whether physician j ∈ J is scheduled to perform offline
(online) medical service on day t is denoted by α j t (β j t ),
which equals one if yes and zero otherwise. The regular offline
(online) capacity of physician j ∈ J available on day t is
denoted by co

jt (c
e
j t ). Thus, clearly, co

jt ≤ c j t (ce
j t ≤ c j t ) for

all j . The fixed-length service times of FV with RV, online
revisit, offline revisit, and FV without RV on physician j
are denoted by b1

j , b2
j , b3

j , and b4
j , respectively. To ensure

continuity of patient care, we allow patients to be served by the
same physician for first visit and revisits as much as possible,
and model this as soft constraints. The planner incurs penalty
costs of ce

p(c
o
p) if an offline (online) revisit cannot be served

by the same physician. The fixed setup cost of physician j ∈ J
scheduled to perform offline (online) medical service each day
is co

u(c
e
u). We denote unit overtime or idle cost on physician

performing offline and online services as co
b , ce

b, respectively.
At the decision point, which is a precise period of the day

given the current appointment schedule, the hospital scheduler
arranges new first visit requests and their potential revisits over
an L-day planning window. Patients arrive for their first visit
during the entire day, therefore their status is not fully known
until the end of the day, which we thus assume to correspond
to decision points. Note that, following the literature [9], our
model schedules potential revisits of first visit patients together
at the decision point to ensure continuity of care. Therefore,
the planning horizon is set as L = max

{
M2, M1

+ max M3
i1

}
to accommodate the longest appointment lead times possible
for both first visit and revisit patients. Our assumption is that
patients accept the appointment date provided by the scheduler
because they do not have a strong preference for the day of
their consultation.

Rolling time patient advanced scheduling is accomplished
by using a sequential decision-making framework. In sequen-
tial decision-making, according to the principle that at the
start of each decision time, on the basis of all the historical
information, the optimization of advanced scheduling is
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TABLE I
MODEL NOTATION

Fig. 1. A sequential decision-making framework for advance scheduling.

implemented for a finite planning horizon; however, only
the decisions made in the present duration are carried out.
Fig. 1 shows the appointment schedule in period k before the
decision point can be observed, including the information on
the number of online and offline capacities of each physician
already assigned to first visit and revisit appointments on day
t (t = k+1, . . . , k+L−1). At the end of period k, the scheduler
must make decisions of assigning the new first visit patients
who arrive on day k and their potential revisits to a certain
physician j ( j ∈ J) on a certain day t (t = k + 1, . . . , k + L).
After each decision interval, the above-mentioned procedure is
repeated and the updated information can be incorporated into
the optimization at the present decision point. In this study,
new appointment requests arrive on a daily basis, and thus
the decision interval d = 1. Based on the current appointment
schedule, we make the optimization for the patient scheduling
from day k + 1 to day k + L; however, only the decisions of
day k are implemented; then, on day k + d , a new decision
optimization is carried out. Fig. 1 shows the structure of the
proposed framework with L = 8 and d = 1.

We now present a stochastic mixed-integer formulation for
the online and offline advance scheduling problem with both
first visit and revisits. At a particular decision point k, the

model is used to make decisions for the following L days.
Table I lists a summary of the notations of this model.

The objective function aims to minimize the three-part total
cost. The first part is the overtime and idle time costs of offline
and online capacities. The second and third parts are the
hospital’s fixed costs for launching offline and online medical
services and the continuity of care violation penalty cost of
online and offline revisits, respectively. Constraints (1b)-(1c),
as shown at the bottom of the next page, ensure that each first
visit patient with revisit and without revisit receives a first
appointment. Constraints (1d)-(1e) ensure that each online
and offline revisit patient receives a revisit appointment.
Constraints (1f)-(1i) enforce that physicians are assigned
with offline and online appointments on scheduled days for
such services. Constraints (1j)-(1m) place limitations on the
specific day that a revisit patient may be allocated. When
a revisit request is generated by a first visit, it must be
scheduled after the first visit date and within the allowable
revisit interval (M3

i1
) for the revisit. These constraints

also ensure continuity of care, with the first and revisit
appointments treated by the same doctor. Note that the left
and right endpoints of offline and online revisit intervals are
set differently in constraints (1j)-(1m). Constraints (1n)-(1o)
assure that the MWTT of each first visit patient with revisit
and without revisit is satisfied. For physician j on day t
during the planning horizon, constraints (1p)-(1q) determine
the amount of online overtime and idle time, respectively,
while similar constraints (1r)-(1s) calculate the offline costs.
The integrality and non-negativity limitations on the decision
variables are defined by constraints (1t).

B. Complexity of the Problem

The integrated online and offline advance scheduling
problem for first visit and revisit can be formulated as
a sequential stochastic mixed-integer programming model
as described above. Small-scale problems can be solved
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directly by the most advanced MIP solvers (such as
GUROBI). However, large-scale instances of the problem are
computationally intractable due to the enormous number of

variables and constraints in the model. Specifically, for K -day
rolling planning, there are |K|·(|J|·|L|·(|I1|·(2 · |S| + 1)+|I2|+

4 · |S|)) variables and |K| ·(2 · |I1| ·(1 + 3 · |S|)+2 · |I2|+2 · |J| ·

min
S∑

s=1

ps[
∑
j∈J

T∑
t=1

co
b(o

os
j t + aos

j t ) + ce
b(o

es
j t + aes

j t ) + co
uα j t + ce

uβ j t +

∑
i1∈I1

∑
j∈J

ce
pqs

i1
(

T∑
t=1

ys
i1 j t −

T∑
t=1

x I
i1 j t )+

co
p(1 − qs

i1
)(

T∑
t=1

zs
i1 j t −

T∑
t=1

x I
i1 j t )] (1a)

s.t.
∑
j∈J

k+L∑
t=k+1

x I
i1 j t = 1, ∀i1 ∈ I1 (1b)

∑
j∈J

k+L∑
t=k+1

x II
i2 j t = 1, ∀i2 ∈ I2 (1c)

∑
j∈J

k+L∑
t=k+1

ys
i1 j t = qs

i1
, ∀i1 ∈ I1,s ∈ S (1d)

∑
j∈J

k+L∑
t=k+1

zs
i1 j t = 1 − qs

i1
, ∀i1 ∈ I1, s ∈ S (1e)

x I
i1 j t ≤ α j t , ∀i1 ∈ I1, j ∈ J, t = k + 1, . . . , k + L (1f)

x II
i2 j t ≤ α j t , ∀i2 ∈ I2, j ∈ J, t = k + 1, . . . , k + L (1g)

ys
i1 j t ≤ β j t , ∀i1 ∈ I1, j ∈ J, t = k + 1, . . . , k + L , s ∈ S (1h)

zs
i1 j t ≤ α j t , ∀i1 ∈ I1, j ∈ J, t = k + 1, . . . , k + L , s ∈ S (1i)∑
j∈J

k+L∑
t=k+1

t ys
i1 j t ≥

∑
j∈J

k+L∑
t=k+1

t x I
i1 j t + ae

− M
(
1 − qs

i1

)
, ∀i1 ∈ I1, s ∈ S (1j)

∑
j∈J

k+L∑
t=k+1

t ys
i1 j t ≤

∑
j∈J

k+L∑
t=k+1

t x I
i1 j t + ae

+ M
(
1 − qs

i1

)
, ∀i1 ∈ I1, s ∈ S (1k)

∑
j∈J

k+L∑
t=k+1

t zs
i1 j t ≥

∑
j∈J

k+L∑
t=k+1

t x I
i1 j t + ao

− Mqs
i1
, ∀i1 ∈ I1, s ∈ S (1l)

∑
j∈J

k+L∑
t=k+1

t zs
i1 j t ≤

∑
j∈J

k+L∑
t=k+1

t x I
i1 j t + ao

+ Mqs
i1
, ∀i1 ∈ I1, s ∈ S (1m)

∑
j∈J

k+L∑
t=k+1

t x I
i1 j t ≤ M1, ∀i1 ∈ I1 (1n)

∑
j∈J

k+L∑
t=k+1

t x II
i2 j t ≤ M2, ∀i2 ∈ I2 (1o)

oos
j t ≥

∑
i1∈I1

b1
j x

I
i1 j t +

∑
i1∈I1

b3
j z

s
i1 j t +

∑
i2∈I2

b4
j x

II
i2 j t − co

jtα j t , ∀ j ∈ J, t = k + 1, . . . , k + L , s ∈ S (1p)

aos
j t ≥ co

jtα j t −

∑
i1∈I1

b1
j x

I
i1 j t −

∑
i1∈I1

b3
j z

s
i1 j t −

∑
i2∈I2

b4
j x

II
i2 j t , ∀ j ∈ J, t = k + 1, . . . , k + L , s ∈ S (1q)

oes
j t ≥

∑
i1∈I1

b2
j ys

i1 j t − ce
j tβ j t , ∀ j ∈ J, t = k + 1, . . . , k + L , s ∈ S (1r)

aes
j t ≥ ce

j tβ j t −

∑
i1∈I1

b2
j ys

i1 j t , ∀ j ∈ J, t = k + 1, . . . , k + L , s ∈ S (1s)

x I
i1 j t , x II

i2 j t , ys
i1 j t , zs

i1 j t ∈ {0, 1}, oos
j t , aos

j t
, oes

j t , aes
j t ≥ 0, ∀i1 ∈ I1, i2 ∈ I2, j ∈ J, t = k + 1, . . . , k + L , s ∈ S (1t)
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|L|(|I1|·(2·|S|+1)+|I2|+4·|S|)) constraints. Even for a small
instance with only 20 patients, 4 physicians, and 100 scenarios,
the model contains more than 387,000 variables and 804,000
constraints. Furthermore, it is straightforward to identify the
complexity of the problem, since mixed-integer programs are
a class of NP-hard problems [45]. These difficulties drive our
creation of an efficacious algorithm for resolving the problem.

III. SOLUTION APPROACH

A. Progressive Hedging Algorithm

For the stochastic mixed-integer problem at hand, as the
scenarios expand, the problem size becomes intractable due to
the growing number of variables and constraints. In particular,
the solution needs to be obtained in quite short time due
to “online scheduling” settings. To address these issues,
we develop a PHA based on the well-known Lagrangian
relaxation technique. The successful application of PHA in
resolving numerous combinatorial optimization issues over
the past several decades has motivated our adoption of it.
The extensive use of this approach was inspired by the
first presentation in [46]. Since then, it has been used
to solve a variety of issues, including the scheduling of
chemotherapy appointments and surgeries, tank container
operations, and routing of unmanned aerial vehicles. The
success of the method can be attributed to its capacity to
solve computationally challenging problems by decomposing
them into more manageable scenario subproblems. While the
PHA does not guarantee global optimality, it finds a good
solution efficiently. Note that the PHA is a useful heuristic
for stochastic mixed-integer models, as demonstrated by a
substantial body of literature [31], [32], [47].

To prohibit anticipation of the future, we first establish
non-anticipativity (NAC) constraints to ensure the consistency
of first visit assignment decision variables over all possible
scenarios. For each scenario, these variables must be copied to
define non-anticipativity constraints. Given that the first visit
assignment decisions of the patients’ first visit with revisit
(x I

i1 j t ) and without revisit (x II
i2 j t ) are independent of each other,

non-anticipativity constraints must be used for both. For the
first visit assignment decision variables, these constraints are
expressed as:

x I
i1 j ts = x I

i1 j t , ∀i1 ∈ I1, j ∈ J, t = k + 1, . . . , k + L , s ∈ S,

(2a)

x II
i2 j ts = x II

i2 j t , ∀i2 ∈ I2, j ∈ J, t = k + 1, . . . , k + L , s ∈ S,

(2b)

where the x I
i1 j t and x II

i2 j t represent the consensus variables.
These non-anticipativity restraints are loosened before the
PHA execution and penalty terms are added to the objective
function for their violation. The objective function is modified
by adding the following formula:

I1∑
i1=1

J∑
j=1

k+L∑
t=k+1

S∑
s=1

µI
i1 j ts

(
x I

i1 j ts − x I
i1 j t

)
+

ρ1

2

I1∑
i1=1

J∑
j=1

k+L∑
t=k+1

S∑
s=1

∥∥x I
i1 j ts − x I

i1 j t

∥∥2

+

I2∑
i2=1

J∑
j=1

k+L∑
t=k+1

S∑
s=1

µII
i2 j ts

(
x II

i2 j ts − x II
i2 j t

)
+

ρ2

2

I2∑
i2=1

J∑
j=1

k+L∑
t=k+1

S∑
s=1

∥∥x II
i2 j ts − x II

i2 j t

∥∥2
, (2c)

where µI
i1 j ts , µII

i2 j ts , ∀i1, i2, j , t , s indicate the Lagrangian
multipliers; ρ1 and ρ2 represent the penalty parameters; and
∥·∥ denotes the ordinary Euclidean norm. Given that x I

i1 j ts,
x I

i1 j t , x II
i2 j ts, x II

i2 j t are binary variables, the penalty component
in (2c) is reformulated as follows:∥∥x I

i1 j ts − x I
i1 j t

∥∥2
= x I

i1 j ts − 2x I
i1 j tsx

I
i1 j t + x I

i1 j t , (2d)∥∥x II
i2 j ts − x II

i2 j t

∥∥2
= x II

i2 j ts − 2x II
i2 j tsx

II
i2 j t + x II

i2 j t . (2e)

To obtain a scenario separable formulation, we estimate
variables x I

i1 j t , x II
i2 j t by x̂ I

i1 j t , x̂ II
i2 j t , which is equal to the

weighted sum of x I
i1 j ts , x II

i2 j ts by using a proximal point
method [30]:

x̂
I
i1 j t =

∑
s∈S

ps x I
i1 j ts,x̂

II
i2 j t =

∑
s∈S

ps x II
i2 j ts. (2f)

Replacing x I
i1 j t , x II

i2 j t in (2d) and (2e) with x̂ I
i1 j t , x̂ II

i2 j t
addresses the quadratic term of the objective function. The
resulting structure facilitates the model to become decompos-
able, with each scenario associated with a subproblem.

The implement steps of the PHA are shown as follows.
Step 1: Initialization. n = 1, ρ

(n)
1 = ρ

(n)
2 = ρ0, µ

I(n)
i1 j ts =

µ
II(n)
i2 j ts = 0, ∀i1, i2, j , t , s.
Step 2: Solve each scenario-based subproblems to obtain

x I(n)
i1 j ts, x II(n)

i2 j ts, ∀i1, i2, j , t , s.
Step 3: Calculation of the consensus parameter x̂ I

i1 j t , x̂ II
i2 j t ,

∀i1, i2, j , t , s.
Step 4: Update the penalty parameter and the Lagrangian

multiplier. ρ
(n+1)
1 = β1ρ

(n)
1 , ρ

(n+1)
2 = β2ρ

(n)
2 , where β1, β2 > 0,

µ
I(n+1)
i1 j ts = µ

I(n)
i1 j ts + ρ

(n)
1 (x I(n)

i1 j ts − x̂ I
i1 j t ), µ

II(n+1)
i2 j ts = µ

II(n)
i2 j ts +

ρ
(n)
2 (x II(n)

i2 j ts − x̂ II
i2 j t ).

Step 5: Repeat Steps 2-4 until the following termination
criteria are satisfied or the maximum number of iterations are
reached:

S∑
s=1

ps

√√√√ I1∑
i1=1

J∑
j=1

k+L∑
t=k+1

(x I(n)
i1 j ts − x̂ I

i1 j t )
2 ≤ ε,

and

S∑
s=1

ps

√√√√ I2∑
i2=1

J∑
j=1

k+L∑
t=k+1

(x II(n)
i2 j ts − x̂ II

i2 j t )
2 ≤ ε.

B. Modifications on Progressive Hedging Algorithm

In this section, we outline our penalty parameter and
Lagrangian multiplier update methods. The penalty parameter
update method used is similar to that in literature [31]. Let
1E1, 1E2 denote the convergence status that calculates the
sum of squares of the difference between the solution of
subproblems and consensus parameters over all scenarios
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at consecutive iterations. The solutions among all scenario
subproblems are highly different and consistent parameter
values are harder to achieve as 1E1(1E2) increases. In this
context, we increase penalty parameter ρ1(ρ2) by multiplying
it with a constant β1(β2) greater than 1. Otherwise, a factor
of 1/β1(1/β2) is applied to reduce the penalty parameter. The
penalty updating method is defined by (3a)-(3b):

1
(n)
E1 =

I1∑
i1=1

J∑
j=1

k+L∑
t=k+1

S∑
s=1

(
x I(n)

i1 j ts − x̂
I(n)

i1 j t

)2
,

1
(n)
E2 =

I2∑
i2=1

J∑
j=1

k+L∑
t=k+1

S∑
s=1

(
x II(n)

i2 j ts − x̂
II(n)

i2 j t

)2
. (3a)

ρ
(n+1)
1 =

{
β1ρ

(n)
1 , if 1

(n)
E1 − 1

(n−1)
E1 > 0,

(1/β1)ρ
(n)
1 , otherwise.

ρ
(n+1)
2 =

{
β2ρ

(n)
2 , if 1

(n)
E2 − 1

(n−1)
E2 > 0,

(1/β2)ρ
(n)
2 , otherwise.

(3b)

We use a Lagrangian multiplier update method inspired by
a previous approach [32], which aims to obtain consistent
solutions to all subproblems. At this point, the consensus
parameter converges to one of two variable values: 1 or 0.
We determine the target convergence value between these
two values by the majority of the solutions in all scenario
subproblems. Two threshold parameters denoted by αi ,
i = 1, 2 are defined to help identify whether the majority
of conditions are met. When the consistency parameter is
greater than αi , then the majority of conditions hold. Next,
the Lagrangian multipliers are updated on the basis of the
following rule. If x̂ I(n)

i1 j t (x̂ II(n)

i2 j t ) is greater than α1(α2), then the
majority of the scenario subproblem solutions assign FV with
RV (FV without RV) patient i1(i2) to physician j on day
t . In this context, the Lagrangian multipliers in subproblems
with 0 values of relevant variables are decreased. Otherwise,
x̂ I(n)

i1 j t (x̂ II(n)

i2 j t ) is no greater than α1(α2), then FV with RV (FV
without RV) patient i1(i2) is not scheduled to physician j
on day t in the majority of the scenarios. Subsequently,
in subproblems with the relevant variables equal to 1, the
Lagrangian multipliers are raised. The Lagrangian multiplier
update method can be formulated as (3c) and (3d), as shown
at the bottom of the page.

IV. NUMERICAL EXPERIMENTS

A. Data Settings

We collected data at our collaborator hospital in Shanghai,
China. The hospital provides comprehensive medical services,
both offline and online, by operating its own Internet hospital.
Similar to the literature [7], [9], we assume that the patient

demand follows Poisson distribution. The average daily
numbers of patient FV with RV and FV without RV are
28.5 and 18.1, respectively. The MWTTs for patient FV with
RV and FV without RV are set to 3 and 5, respectively. The
arriving horizon is set as K = 5. The rolling horizon procedure
is carried out as follows. On day k, the advancing model is
solved for a planning horizon of L days. Then, the schedule
generated for day k + 1 is implemented. The new arising
patient demands are collected and the information of available
capacities is updated before solving the model on day k+1 for
the next L days. The schedule of this new model on day
k+1 is then put into action. The model is once more solved for
the following L days once the appropriate updates have been
made to capacity and requests. This pattern is repeated for
the remaining phases of the arriving horizon. Minimum and
maximum revisit intervals of offline (online) revisits are set to
2(4) and 3(5), respectively. Therefore, the planning horizon is
set to 12 days.

Four physicians are set up with offline and online medical
services each day with a daily capacity of 480 minutes. During
the first four days of the planning horizon, each physician has
no initial available online capacity because it was occupied
by previously scheduled revisit patients. The online capacities
of each physician are initially available for 60 min on the
following day. In the first two days of the planning horizon, the
offline capacity initially available to each physician is 240 min
because it is occupied by the pre-scheduled first visit or revisit
patients. For the rest of the day, the total capacity minus the
online capacity represents each physician’s initial available
offline capacity. The service duration for a FV with RV, online
revisit, offline revisit and FV without RV is 60, 30, 40, and
40 minutes, respectively. We randomly generate the scenarios
of patients’ revisit status by setting the realized vector i-th
component to one with a probability equal to 0.6. We set
continuity of care violation penalties co

p, ce
p as 1.5 and 1 for

offline and online patients. The offline and online overtime or
idle costs are set to 1.5 and 1, respectively. The fixed offline
and online service setup cost co

u and ce
u are set to 1.5 and 1,

respectively. These settings represent our base case on which
numerical experiments are implemented.

B. Algorithm Performance

In this experiment, we use five methods as benchmarks
to evaluate the performance of the proposed PHA. The
first method is to solve the SAA by using the standard
branch-and-cut solution algorithm implemented in GUROBI.
We propose the other four Lagrangian decomposition
algorithms based on Lagrangian relaxation, which make it
possible to tackle large-scale stochastic optimization problems
by decomposing them into scenario subproblems [33].

µ
I(n+1)
i1 j ts =

 µ
I(n)
i1 j ts + ρ

(n)
1

(
x I(n)

i1 j ts − x̂
I(n)

i1 j t

)
, if x̂

I(n)

i1 j t < α1, x I(n)
i1 j ts = 1,

µ
I(n)
i1 j ts − ρ

(n)
1

∣∣∣x I(n)
i1 j ts − x̂

I(n)

i1 j t

∣∣∣, if x̂
I(n)

i1 j t > α1, x I(n)
i1 j ts = 0.

(3c)

µ
II(n+1)
i2 j ts =

 µ
II(n)
i2 j ts + ρ

(n)
2

(
x II(n)

i2 j ts − x̂
II(n)

i2 j t

)
, if x̂

II(n)

i2 j t < α2, x II(n)
i2 j ts = 1,

µ
II(n)
i2 j ts − ρ

(n)
2

∣∣∣x II(n)
i2 j ts − x̂

II(n)

i2 j t

∣∣∣, if x̂
II(n)

i2 j t > α2, x II(n)
i2 j ts = 0.

(3d)
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Algorithm 1 Lagrangian Decomposition Embedded With Subgradient Method
1: Step 1. Initialize:
2: Lower and upper bounds, UB = ∞, LB = -∞;
3: Lagrangian multipliers, ρI, ρII;
4: Iteration counter, n = 0, r = 0.
5: Step 2. Solving Lagrangian dual problem:
6: Solve scenario subproblems and sum subproblem objective values to get the lower bound LBn; Update LB: if LBn > LB,

then LB = LBn .
7: Step 3. Update UB:
8: Generate solutions x I, x II using the proposed heuristic rule;
9: For each patient, calculate how many scenarios the optimal assignment decision is physician j , and select the physician

j that is the optimal allocation in most scenarios to form a feasible solution. The appointment day for the patient will be
the earliest among the scenarios where the physician-patient allocation is decided;

10: Obtain the original problem objective value Objn and evaluate the solution feasibility. If x I and x II are not feasible, add
an integer cut to exclude this infeasible solution, return to Step 2, and set r = r + 1;

11: If x I, x II are feasible and Objn < UB, then UB = Objn;
12: If x I, x II are not feasible and r = rmax , then use solutions x I, x II as input parameters, solve each scenario subproblem and

obtain objective value Objn .
13: Step 4. Update Lagrangian multipliers using the subgradient method:
14: ρIs

n+1 = ρIs
n + θn

(U B−L Bn)∑
s (v

I
sn)

2 , ρIIs
n+1 = ρIIs

n + θn
(U B−L Bn)∑

s (v
II
sn)

2 , ∀s ∈ S,
15: where vI

sn = x I
i1 j ts −x I

i1 j t,s+1, vII
sn = x II

i2 j ts −x II
i2 j t,s+1, s ∈ S\S pertaining to the sequential representation, vI

sn = x I
i1 j t1−x I

i1 j ts ,
vII

sn = x II
i2 j t1 − x II

i2 j ts , s ∈ S \ 1 pertaining to the asymmetric representation. The term θn ∈ (0, 2] is a step length parameter.
By correcting the error in the estimation of the true optimal value, the term is used to change the step size’s length.

16: Step 5. Stop and return x I, x II and UB, if UB-LB < ε or any other condition is satisfied, such as the amount of running
time or the number of iterations. If not, set n = n + 1 and go to Step 2.

We combine the subgradient method [48] and surrogate
subgradient method [49], the most popular or state-of-the-art
technique for obtaining solutions to the Lagrangian dual, with
two different formulations for the NAC constraints in (2a)
and (2b) (specifically the sequential formulation as given
in (4a) and asymmetric formulation provided in (4b) [39]).
In this context, we call the second method LDSS which is
the combination of the subgradient method and the sequential
NAC formulation, and the third method LDSA is composed
of subgradient method and the asymmetric NAC formulation.
The fourth and fifth methods are named as LDSSS and
LDSSA, which are the combination of surrogate subgradient
algorithm with sequential and asymmetric NAC formulation
respectively. The penalty terms vI

s = x I
i1 j ts − x I

i1 j t,s+1, vII
s =

x II
i2 j ts − x II

i2 j t,s+1, s ∈ S\ S associate with sequential NAC (4a).
vI

s = x I
i1 j t1 − x I

i1 j ts , vII
s = x II

i2 j t1 − x II
i2 j ts , s ∈ S \ 1 represent

the penalty term associated with asymmetric NAC (4b).
The compact formulations for Lagrangian relaxation, the
Lagrangian dual problem, and scenario subproblem with
respect to sequential and asymmetric NAC constraints
can be found in [39]. The steps for LDSS, LDSA,
LDSSS, and LDSSA these four Lagrangian decomposition
algorithms are summarized in Algorithm 1 and Algorithm 2
(see more specific technical details of the algorithm
in [39], [49]).

x I
i1 j ts = x I

i1 j t,s+1, x II
i2 j ts = x II

i2 j t,s+1,

∀i1 ∈ I1, j ∈ J, t = k + 1, . . . , k + L , s ∈ S \ S. (4a)

x I
i1 j t1 = x I

i1 j t,s, x II
i2 j t1 = x II

i2 j ts,

∀i2 ∈ I2, j ∈ J, t = k + 1, . . . , k + L , s ∈ S \ 1. (4b)

To evaluate the efficiency of the proposed PHA, we design
the testing instances as combinations of different levels of
patient demands, probability of online revisit, and number of
scenarios. Without loss of generality, we explore three groups
of instances with rising patient volume: Low Traffic Case
(daily arrival rate that is 0.5 times the base level), Medium
Traffic case (base level daily arriving rate), and High Traffic
Case (daily arriving rate that is 1.5 times the base level), which
are common scenarios in the investigated hospital. We generate
the possible scenarios based on a binomial distribution. In this
advance scheduling context, we consider three typical pi1 for
the probability of online revisit based on history data, where
pi1= 0.35, 0.6, or 0.85. The number of scenarios is drawn
from [90, 3000]. Each instance group includes nine instances
with different probabilities of online revisit and number of
scenarios. As a result, 27 test instances in total are generated.
Each instance is denoted by L/M/HT − pi1 − |S|, where |S| is
the number of scenarios. Considering the “online scheduling”
settings, the algorithm needs to be run repeatedly within a
period and to obtain the optimal decision in a short time for
each running to achieve real-time scheduling. In this context,
we set the time restriction to 2880 seconds for each decision
running using GUROBI, so the total time limitation is 14400s
(e.g., 4h) for five decision runnings in each instance. The
maximum number of iterations of the five methods PHA,
LDSS, LDSA, LDSSS, and LDSSA are set to be the same
to ensure the comparability of algorithm performance and to
prevent pointless calculations. All experiments are carried out
on a computer with a 2.90 GHz Intel Core i7-10700 CPU
and 16 GB of memory. All models are solved by Gurobi
9.0.2 on Python 3.7.
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Algorithm 2 Lagrangian Decomposition Embedded With Surrogate Subgradient Method
1: Step 1. Initialize lower and upper bounds, Lagrangian multipliers ρIs

0 , and ρIIs
0 , and iteration counter n = 1, r = 0. Given

the initial Lagrangian multipliers, solve scenario subproblems to obtain x I
0 and x II

0 .
2: Step 2. Set the surrogate dual to the dual and set the surrogate subgradient to the subgradien. Update Lagrangian multipliers

using the subgradient information.
3: ρIs

1 = ρIs
0 + θn

(U B−L Bn)∑
s (v

I
sn)

2 vI
sn , ρIIs

1 = ρIIs
0 + θn

(U B−L Bn)∑
s (v

II
sn)

2 vII
sn , ∀s ∈ S.

4: Step 3. Update LB and UB using the same algorithmic logic of Step 2 and Step 3 in Algorithm 1.
5: Step 4. Update Lagrangian multipliers using the surrogate subgradient method:
6: Examine whether the surrogate optimality condition holds. Compute the objective value L(ρI

n+1, ρ
II
n+1, xI

n+1, xII
n+1) given

ρI
n+1, ρII

n+1, xI
n+1, xII

n+1 and the objective value L(ρI
n+1, ρ

II
n+1, xI

n, xII
n ) given ρI

n+1, ρII
n+1, xI

n , xII
n .

7: If L(ρI
n+1, ρ

II
n+1, xI

n+1, xII
n+1) ≥ L(ρI

n+1, ρ
II
n+1, xI

n, xII
n ), then the surrogate optimality condition does not hold and let xI

n+1 =

xI
n , xII

n+1 = xII
n .

8: Retrieve the new set of Lagrangian multipliers.
9: ρIs

n+1 = ρIs
n + θn

(U B−L Bn)∑
s (v

I
sn)

2 vI
sn , ρIIs

n+1 = ρIIs
n + θn

(U B−L Bn)∑
s (v

II
sn)

2 vII
sn , ∀s ∈ S.

10: Step 5. Examine whether the termination criteria hold. If the termination criteria are satisfied, stop and return x I, x II and
UB; otherwise, set n = n + 1 and go to Step 3.

Table II indicates the performances of PHA and benchmark
methods for the proposed model with different datasets.
Compared with the exact method by Gurobi 9.0.2, the PHA
can output the satisfactory solution very quickly. The PHA
can solve most of instances in a few hundred seconds instead
of thousands of seconds by Gurobi. The proposed PHA can
solve the problem with an average CPU time of 3940.4s,
while the average CPU time taken by Gurobi is 15950.7s.
The results where the cost value in the “PHA-Costs” column
is less than that of in the “Gurobi SAA-Costs” column
show that the solutions generated by our PHA are superior
to those generated by Gurobi. This superior performance
is noticeable in 11 cases. Compared with the Lagrangian
decomposition algorithms embedded with the subgradient
method, the performance of the PHA is significantly and
consistently superior to that of the LDSS and LDSA methods
in terms of both the quality of the solution and CPU time.
Table III reports the gap between the solution value generated
by the LDSSS and LDSSA (Obj L DSSS , Obj L DSS A) and the
solution value generated by the PHA (Obj P H A). The gap is
computed as follows: G AP P H A−L DSSS = 100 ∗ (Obj P H A −

Obj L DSSS)/Obj L DSSS , G AP P H A−L DSS A = 100∗(Obj P H A −

Obj L DSS A)/Obj L DSS A. In comparison to LDSSS and LDSSA,
the Lagrangian decomposition methods embedded with the
surrogate subgradient algorithm, the PHA can generate equally
good solutions with an overall average gap of 3.60% and
3.35% over all 27 instances, respectively. It is worth noting
that our algorithm is quite fast in solving the problem, taking
less computation time than the LDSSS and LDSSA in each
instance. Comparing the two methods LDSS and LDSA,
we can find that the solution quality of LDSA with asymmetric
NAC is better, but the solution time is longer than that of
LDSS with sequential NAC. LDSSS and LDSSA perform
equally well in solution value, while LDSSA with asymmetric
NAC takes less running time than LDSSS with sequential
NAC in most of instances. The comparison results of Columns
“LDSS” and “LDSA” and Columns “LDSSS” and “LDSSA”
indicate that the surrogate subgradient technique embedded
within Lagrangian relaxation can produce better solutions with

a longer time than subgradient technique embedded within
Lagrangian relaxation.

As the problem scale rises with an increasing number
of patients and scenarios, the running time of the PHA,
Gurobi, LDSS, LDSA, LDSSS, and LDSSA all increase, and
Gurobi has the highest growth rate among these methods.
The use of Gurobi for Medium and High Traffic instances
with 2000 and above scenarios is not feasible because of
limitations in memory. Due to time limitations, it is not
possible to use LDSS, LDSA, LDSSS and LDSSA for solving
Medium Traffic instances with 2000 and above scenarios.
High Traffic instances with 1000 scenarios cannot be solved
within 4 hours by using LDSS, LDSA, LDSSS and LDSSA.
Even feasible solutions to the much larger instances cannot
be generated by the commercial solver Gurobi or the other
four Lagrangian decomposition based algorithms. For the
majority of cases, the PHA yields good solutions within
20 minutes. The algorithm scales up incredibly well and
can solve High Traffic instances up to 3000 scenarios with
near-optimal performance in an acceptable amount of time.
Overall, the aforementioned facts lead us to the conclusion that
the PHA is a powerful technique by obtaining good feasible
solutions efficiently, and our algorithm’s improvement effect
becomes more pronounced when the problem scale is larger.
The significant benefits demonstrate that the proposed PHA is
an effective algorithm that can meet the needs of real-world
applications.

C. Comparisons of Capacity Allocation Schemes Under
Different Traffic Volumes

This section first presents the solution of the hybrid online
and offline advance scheduling problem for the base case. The
total costs are 10845.17. Fig. 2 indicates the results of each
physician’ service capacity allocation to first visit and revisit
patients for each day in the planning horizon.

In our discussion, the hospital practitioners stated their
desire to find an easy-to-implement capacity allocation method
in the current hybrid online and offline system with first visit
and revisit patients. Therefore, as shown in Fig. 3, we consider
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TABLE II
COMPARISON RESULTS OF PHA AND PROPOSED BENCHMARKS

TABLE III
COMPARISON RESULTS OF PHA, LDSSS AND LDSSA

Fig. 2. Advance scheduling results for the base case.

four types of capacity allocation schemes with different
numbers of physicians who are assigned with both offline
and online capacities: Allocation I (four physicians with both
offline and online capacities assigned), Allocation II (three
physicians with both offline and online capacities assigned),
Allocation III (two physicians with both offline and online
capacities assigned), and Allocation IV (one physician with
both offline and online capacities assigned). Furthermore, three

scales of patient demand: Low Traffic Case, Medium Traffic
case, and High Traffic Case as described before are considered.
Other parameters are set unchanged as basic levels. Through
these cases, we investigate how these four allocation schemes
compare in performance under different patient demands.

Table IV reports the cost results for three situations (Low
Traffic, Medium Traffic, and High Traffic). Increasing patient
demand leads to a rise in offline overtime costs COo and a
decrease in idle cost Cao. These observations are intuitive and
hold in online capacity. As traffic volume increases, offline
overtime and idle costs Co decrease first and then increase,
while online overtime and idle costs Ce continue increasing.
The change in total cost T C is the same as that of Co. That
is, traffic volume has more sensitive effects on offline capacity
than on online capacity, playing a lead role in the change in
total cost.

In the low traffic case, Allocation IV slightly performs
better compared with Allocation I, although the difference
is not statistically significant. With increasing traffic volume,
Allocation I consistently outperforms all other allocation
schemes. Given the fact that more patients in larger systems
are subject to schedule planning, Allocation I is more likely
to improve the performance by implementing more intelligent
approaches to capacity allocation and patient scheduling.
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TABLE IV
COMPARISON RESULTS OF ALLOCATION SCHEMES UNDER DIFFERENT TRAFFIC VOLUMES

TABLE V
SENSITIVITY ANALYSIS RESULTS OF COST COEFFICIENTS

Fig. 3. Four types of allocation schemes.

D. Sensitivity Analysis of Cost Coefficients

In this section, we investigate the impact of the cost
coefficients. We vary the unit costs of physician offline and
online overtime or idle, continuity of care violation penalty
of offline and online revisit separately and sequentially while
fixing other cost coefficients as 1. Table V shows the system
performance results including overtime and idle cost offline

(Co) and online (Ce), penalty of offline (CPo) and online revisit
(CPe), total penalty cost (CP ), and total cost (T C). A larger
unit cost of co

b , ce
b or ce

p leads to an increase in the expected
total cost. The results are intuitive. However, increases in unit
cost of co

p lead to a decreasing trend in expected total costs.
This is because the CPo is always 0 regardless of the value of
co

p. As co
p increases, offline overtime and idle cost decreases

and results in a downward trend in the total costs. We can
also note that the system performances are more sensitive to
co

b and ce
b than penalty cost of continuity of care violation co

p
and ce

p. In addition, both offline and online overtime and idle
time show an upward trend with the increase of co

b . Conversely,
increasing ce

b makes both offline and online overtime and idle
time tend to decrease.

E. Practical Implications

From the above observations, we can assume the value
of introducing different capacity allocation schemes, which
have a significant influence on the system performance. When
the patient volume is large, the model suggests to apply
Allocation I with all physicians assigned with both offline and
online capacities to reduce the total costs. Another insight from
the results is that hospitals must carefully and appropriately
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decide the parameters, especially the unit offline and online
overtime or idle cost, according to their impact. We can
suggest to hospital managers how to select parameters based
on their purposes. For example, to obtain shorter offline
overtime and idle time, we recommend practitioners to set
a smaller co

b , a larger ce
b, or a larger co

p. A smaller co
b or a

larger ce
b can also be adopted to achieve less online overtime

and idle time.

F. Discussions

This study sets the foundations for the application of
healthcare intelligence and digitalization. We provide intelli-
gent decision-making techniques for the advance scheduling
of chronic disease patients in integrated offline and online
medical service systems. These efforts can improve the
efficiency and effectiveness of chronic disease management.
Although we attempt to formulate the model to be as
realistic as possible, several limitations unavoidably occur and
provide relevant interesting research directions. First, practical
problems may occur such as no-shows, cancellations, and
rescheduling, which can be addressed as follows. The clinic
may overbook patients by “inflating” the typical capacity. That
is, let us assume that the real effective regular capacity is q
and the average no-show rate is p; then to handle no-shows,
the clinic assumes they can serve a larger patient volume
with a regular capacity of q/(1 − p). For rescheduling of
cancellations or no-shows, the missed appointments on day
k are then reviewed for scheduling on day k + 1 together
with new arising demands. Second, the sequencing and timing
of each patient within the same day are not considered in
the advance scheduling problem. One research direction is to
consider physician brain cognitive fatigue state changes due
to switching between online and offline in the joint model
of advance and appointment scheduling. That is, suppose that
a fixed or time-dependent switching cost is generated as a
result of one working style conversion. Finally, the case where
revisits have a higher priority to be admitted than the first visit
patients when the service provider has an option of rejecting
patients is worthy of further exploration.

V. CONCLUSION

In this study, we investigate the advance scheduling problem
for managing first visits and revisits with chronic diseases
while considering online and offline revisit uncertainty and
heterogeneity. We obtain a patient schedule that minimizes
the total cost, which includes offline and online overtime
and idle costs and the continuity of care violation penalty of
offline and online revisits. To schedule patients for a planning
horizon at a particular decision moment, we develop a
stochastic mixed integer programming model. Then, to obtain
an effective solution, we reformulate the problem structure to
be decomposable into scenario-based subproblems and solved
by PHA. Next, the modified PHA with the penalty update
and Lagrangian multiplier update is proposed. Finally, for
rolling time advance scheduling, we use a sequential decision-
making architecture that includes the stochastic programming
model and modified PHA. The effectiveness of the proposed

algorithm and the healthcare system is verified by the
numerical experiments, which reveal that our approach has
superior solving ability than the commercial solver Gurobi
and the published state-of-the-art Lagrangian relaxation based
methods. The numerical results also provide managerial
insights. For example, a capacity allocation scheme with all
physicians assigned with both offline and online capacities
is a good choice to reduce costs. In the future, further
investigations can focus on actual constraints of physician
workload balance requirements and consider human factor
costs caused by switching between online and offline work
states.
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