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Abstract
With the development of high-endmanufacturing, a variety of sophisticated parts with complex curved surfaces have emerged,
and curved surface profile monitoring is of great importance for achieving the higher performance of a part. Benefiting from
the recent advancements in non-contact measurement systems, millions of high-density point clouds are rapidly collected
to represent the entire curved surface, which can reflect the geometrical and spatial features. The traditional discrete key
quality characteristics-based monitoring approaches are not capable of handling complex curved surfaces. A novel curved
surface profile monitoring approach based on geometrical-spatial joint features is proposed, which consists of point cloud data
preprocessing, Laplace–Beltrami spectrum calculation, spatial geodesic clustering degree definition, and multivariate control
chart construction. It takes full advantage of the entire wealth information on complex curved surfaces and can detect the
small shifts of geometrical shape and spatial distribution information of non-Euclidean surfaces. Two real-world engineering
surfaces case studies illustrate the proposed approach is effective and feasible.

Keywords Curved surface · Profile monitoring · Geometrical feature · Spatial distribution · Non-Euclidean surfaces

Introduction

With the development of high-end manufacturing, it appears
a large number of high-precision and high-added value parts
with complex curved surfaces, such as turbine rotor and
blade, cylinder head combustor chambers of automobile
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engines, and vacuum chambers of semiconductor equip-
ment. The surface profile quality of these parts is of great
importance for the functional behavior of a part including
stiffness, abrasion-resistance, reliability and life (He et al.,
2019; Moreira et al., 2019). It depends on the stability of
the manufacturing process, the profile error will fluctuate
greatly when the manufacturing process is unstable, thereby
leading to product failure or inaccurate assembly. For exam-
ple, in the manufacturing process of engine cylinder bore,
due to the vertical and rotary motion of honing head, which
leads to deviations between the actual profile of the cylin-
der and the standard profile (roundness, cylindricity). The
profile deviations seriously affect the sealing, reliability and
life of the engine cylinder bore. Therefore, it is necessary
to measure the processed surface profile, and the deviation
between the actualmachined surface and the standard surface
is modeled and analyzed. Finally, the surface profile moni-
toring of the engine cylinder hole is realized by monitoring
the model parameters and error terms (Zhao et al., 2020). For
the combustion chamber of engine cylinder head, it is com-
posed of complex curved surfaces with intersecting holes,
and the inner surface is cast by mold. At the same time, the
milling depth of the bottom surface of the cylinder head will
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affect the shape of the curved surface, which also determines
the volume of the combustion chamber, thereby affecting the
performance of the engine. Therefore, the processed cylinder
head combustion chamber is measured to obtain the sur-
face profile data. By monitoring the surface profile quality in
the manufacturing process, the cylinder head manufacturing
problems can be found in time (Zhao et al., 2023a, 2023b). In
the manufacturing process of wafers, silicon ingots are usu-
ally cut into several sections using a wire saw. After several
flattening steps such as grinding, polishing and cleaning, the
wafers are sent to the front-end and back-end processes, and
the final chip is obtained. In the front-end process, unsat-
isfactory geometric surface profile quality often leads to a
large number of defective chips on the wafer, resulting in
manufacturing process delays and economic losses. For the
processed wafer, the machining error in actual manufactur-
ing process is determined by qualifying the geometric profile
deviation between the actual wafer and the standard wafer,
and checking whether the newly produced wafer meets the
standards. By monitoring the surface profile quality of the
part and eliminating the influence of random errors, it facil-
itates the traceability of errors in the manufacturing process
and improves the stability of the machining process. There-
fore, the surface profile quality monitoring method proposed
in this paper is of great significance for the manufacturing
process of complex surfaces (Zhang et al., 2016). According
to the difference in geometrical properties, the engineering
workpiece surfaces can divide into Euclidean surfaces and
non-Euclidean surfaces (Jiang et al., 2021). The Gaussian
curvature of the Euclidean surface is zero everywhere and
it usually appears as a plane or a cylinder, while the non-
Euclidean surface appears as curved surfaces with non-zero
and variableGaussian curvature including a sphere surface or
a freeform surface. The non-Euclidean surfaces have com-
plex structures and arbitrary shapes, which exist widely in
engineering practice. The traditional contact measurement
approach can only obtain the three-coordinate information
of limited measurement points, which is difficult to charac-
terize complex non-Euclidean surfaces. Benefiting from the
recent advancements in non-contact measurement systems,
millions of high-density point clouds are rapidly collected
for the complex manufacturing process (Shao et al., 2021;
Zhao et al., 2023a, 2023b). They can represent a total part’s
surface with high fidelity and high-density (HD) datasets in
the forms of point clouds, which achieve the high-definition
reproduction of the surface profile and offer new opportuni-
ties to monitor the small shifts of the surface geometry. The
resulting high-density datasets not only have a great potential
to inspect parts clearly, but also bring challenges to qual-
itymonitoring of parts. Unfortunately, traditional monitoring
approaches have yet to be adapted to take full information of
the new data-rich condition.

Statistical control chart is a powerful tool in surface quality
monitoring, which determines the stability of the manufac-
turing process by analyzing the surface quality of the parts
produced in the stable state.Many researchers have proposed
a large body of profilemonitoring works based on image data
and point cloud data by using control charts. Depending on
the different kinds of surfaces, the monitoring strategies are
also divided into two categories. As for Euclidean surfaces,
Megahed et al. (2012) developed an extended likelihood ratio
control chart based on a spatiotemporal framework to mon-
itor image data. He et al. (2016) proposed a multivariate
generalized likelihood ratio (MGLR) control chart tomonitor
grayscale images of industrial products. Zhang et al. (2016)
proposed an Additive Gaussian Process model to approxi-
mate a standard geometric profile of a wafer, and quantified
the spatially correlated deviations in an in-control manufac-
turing process. Shang et al. (2019) presented an intrinsic
Gaussian Markov random field (IGMRF) with the hierar-
chical Bayesian model for modeling 2D spatial count data,
and developed amultivariate exponentially weightedmoving
average (MEWMA) control chart to monitor wafer qual-
ity and detect out-of-control wafers. Suriano et al. (2015)
proposed a modeling and monitoring method for surface
variation control by fusing cross-correlations among themea-
sured data and manufacturing process variables along with
spatial correlations. Dastoorian and Wells (2023) developed
a hybrid offline/online quality control framework for real-
time monitoring high-density data sets which is fused by
images and point cloud data. Zhao et al. (2020) proposed
a circular and cylindrical profile monitoring approach con-
sidering spatial correlations. Wang et al. (2016) developed
a control chart based on a generalized likelihood ratio to
rapidly detect process faults and provide diagnostic informa-
tion for process improvement. Huang et al. (2021) simulated
the average displacement of defects in different positions,
sizes, and amplitudes of parts by constructing a control chart.
Wang et al. (2014) proposed aGaussian-Krigingmodel based
control chart to monitor the machining process for a two-
dimensional surface profile of products. Li et al. (2022)
proposed a time-domain spectral analysis method based on
grinding force signal and grinding surface texture curve to
realize real-time monitoring of ceramic surface roughness
during the grinding process.

Compared to the Euclidean surface, the non-Euclidean
surface is characterized by three-dimensional high-density
point cloud data containing spatial information and the
geometrical shape, which is difficult to be parameterized.
The traditional discrete key quality characteristics based-
monitoring approaches for Euclidean surfaces are not capa-
ble of handling these high-density point clouds,which cannot
be directly applied to non-Euclidean surfaces. There are few
studies on non-Euclidean surface profile monitoring. Based
on point cloud data, Wells et al. (2016, 2021) proposed
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adaptive generalized likelihood ratio (AGRL) and Non-
Uniform Rational Basis Spline (NURBS) surface approach
to statisticallymonitormanufacturing processes respectively.
According to the similarity between the probability density
function of the observed surface and the normal surface,Baek
et al. (2023) proposed a new method to monitor the shifts
in multimode surface topography. Colosimo et al. (2014)
proposed a Gaussian process modeling approach to model
manufacturing surfaces, and monitor deviations between the
actual surface and the target surface using the Hotelling T2

control chart. Instead of charting summary statistics, Wang
and Tsung (2005) proposed charting schemes based on the
quantile–quantile (Q–Q) plot and described various shift pat-
terns in a huge sample using different profile monitoring
methods. Bui and Apley (2022a, 2022b), Zhang et al. (2023)
proposed a manifold learning method to characterize the
shape deviation fluctuation between parts. Ren andNi (2021)
proposed a real-time monitoring framework for the wafer
manufacturing process, the statistics of T2, SPE and C were
calculated to achieve the process control. Li et al. (2020) pro-
posed a new multivariate nonparametric control chart based
on running tests for multivariate data stream monitoring.

However, these current profile monitoring researches on
the non-Euclidean surface still have their limitations. The
mapping-based dimension-reduction methods are easy to
lose important spatial data of deviation position, and the
process modeling methods are only suitable for parametric
surfaces. Moreover, the time-consuming point cloud regis-
tration between the actual surface and the nominal surface
before monitoring, which does not meet the requirement of
production takt. More recently, Zhao and Castillo (2021,
2022) proposed a registration-free approach based on the
Laplace–Beltrami spectrum to monitor the shape variation,
but it ignores the spatial distribution information of the
point cloud. Therefore, the main contribution of this paper
is that a novel curved surface profile monitoring approach
based on the geometrical-spatial joint features is presented.
As an inherent measure of the three-dimensional surface
manifold, the Laplace–Beltrami spectrum is developed to
characterize the shape information of the curved surface,
which is invariant with respect to rigid transformations of
parts, thereby avoiding time-consuming registration with the
nominal part. A new index called spatial geodesic clustering
degree based on spatial geodesic distance matrix is defined,
which can well represent the spatial distribution informa-
tion of curved surfaces. A joint multivariate statistic LS-T2

consists of Laplace–Beltrami spectrum and spatial geodesic
clustering degree is proposed and the LS-Hotelling T2 con-
trol chart is constructed to achieve curved surfacemonitoring.
The proposed monitoring approach takes full advantage of
the geometrical shape and spatial distribution information of
non-Euclidean curved surfaces.

The remainder of this paper is organized as follows.
“Brief introduction of Laplace–Beltrami spectrum” section
introduces the basic idea of Laplace–Beltrami spectrum.
“The proposed approach” section describes the detail of the
proposed approach. “Numerical simulation” and “Case stud-
ies” sections demonstrate the feasibility and application of
the proposed approach through numerical simulation and
two real-world engineering surfaces case studies. Finally,
“Conclusions” section presents conclusions and discusses
implications for future research.

Brief introduction of Laplace–Beltrami
spectrum

Laplace–Beltrami (LB) operator is defined as the divergence
of the gradient, which is the extension of Laplacian operator
(Zhao & Castillo, 2022). Different from Laplacian operator
deriving from flat space, LB operator is defined on curved
space or manifold. In the field of differential geometry, the
curved surface is instance of a 2-dimensional manifold. The
LB operator encodes the curvature of the manifold, which is
usually used to characterize the shape of the curved space or
manifold. The definition of LB operator is:

�M f � −divM∇M f

� − 1√
det(g)

∑k

j�1

∂

∂x j

(√
det(g)

∑k

i�1
gi j ∂ f

∂xi

)

(1)

where M denotes a curved surface or 2-manifold, divM and
∇M represent the divergence and the gradient of M respec-
tively. f is a function of each point on M , which is given by
f (x1, x2, . . . , xk) ∈ C2. xi denotesmanifold coordinate and
k denotes the number of dimensions of the manifold (k � 2
for surfaces).g is ametric tensor defined by the ambient space
on M , det(g) is the determinant of g, which is computed by
a parametric surface p(u, v) � (x(u, v), y(u, v), z(u, v))′∣∣(u, v) ∈ D ⊂ R

2 .
Here, gi j ∈ g−1 and the definition of g is:
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Fig. 1 The framework of the proposed approach

where pu and pv are the surface different vectors at p(u, v),
u � x1 and v � x2 are local coordinates, and 〈, 〉 represents
the standard inner product. Benefitting from the intrinsic geo-
metrical properties and invariant to the curved surface rigid
transformation (rotations and translations) of the metric ten-
sor g, the geometrical shape feature of the curved surface
M represented by scanned point cloud data can be charac-
terized by the intrinsic differential operator g, which avoids
time-consuming registration problems.

Similar to LB operator, the LB operator spectrum also
encodes the inherent geometric and topological information
in the curved surface or manifold M , which is induced by
solving a Laplacian eigenvalue problem:

�M f � λ f (5)

where f is called eigenfunction and λ is called eigenvalue,
and this formula is also known as the Helmholtz partial dif-
ferential equation. The solution {λi }∞i�0(0 � λ1 ≤ λ2 ≤
λ3 . . . ≤ λi ) of the Helmholtz’s equation is the set of
eigenvalues, which is named LB spectrum. The slope of
LB spectrum lim

i→∞
λi
i � 4π

V ol(M) is related to the volume of

the manifold, which indicates the shape difference between

curved surfaces.More importantly, LBoperator spectrumcan
reflect the variations of the manifold in a continuous form,
which can be considered as a powerful tool for shape identi-
fication and monitoring the small geometrical changes of the
curved surface.

The proposed approach

Overview of the proposed approach

This section describes an overview of the proposed curved
surface monitoring approach based on geometrical-spatial
joint features using point cloud data. It consists of point cloud
data preprocessing, Laplace–Beltrami spectrum calculation,
spatial geodesic clustering degree definition, andmultivariate
control chart construction. The framework of the developed
monitoring approach is shown in Fig. 1, and the procedure
involves the following steps.

Step 1 Point cloud data preprocessing Read the point cloud
data of measured curved surface and eliminate out-
liers, noisy and redundant points.
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Step 2 Laplace–Beltrami spectrum calculation Convert the
point cloud data into triangular mesh and achieve the
Laplace–Beltrami operator discretization.Define the
shape function on each triangular mesh nodal point
and translate the Helmholtz equation into a charac-
teristic equation by the Galerkin variational formula.
Then, the Laplace–Beltrami spectrum is obtained by
calculating the partial derivative of the shape func-
tions and solving the characteristic equation.

Step 3 Spatial geodesic clustering degree definition A Spa-
tial Geodesic Distance Matrix is defined to find
out the optimal segmenting size of the point cloud
data with the largest spatial correlation. The spatial
geodesic clustering degree of the point cloud data is
determined in the optimal segmenting size.

Step 4 Multivariate control chart constructionAnovelmul-
tivariate statistic is generated by LB spectrum and
spatial aggregation. The Hotelling’s T2 control chart
is constructed to achieve the curved surface moni-
toring.

Point cloud data preprocessing

Engineering curved surfaces are measured by a 3D laser
scanning instrument, and massive and high-density point
cloud data are generated to characterize each curved surface.
The 3D laser scanner used in this paper is called KSCAN-
Magic, which is a composite 3D scanner of infrared and
blue laser, as it shown in Fig. 2. It can emit laser spots
or linear lasers to the measured object, and obtain the 3D
laser point cloud data of the object quickly, accurately and
efficiently. KSCAN-Magic has a variety of working modes
including: blue cross laser high-speed scanning, infrared
parallel laser large-format scanning, blue parallel laser fine
scanning, single blue laser deep hole scanning, and built-in
global photogrammetry system. The scanning area can reach
1440 mm × 860 mm, the accuracy is 0.02 mm, the volume
accuracy is 0.030 mm/m, and the depth of field is 925 mm.
The reference distance is 300 mm, the single point repeata-
bility is 0.030 mm, the tracking frequency is 60 Hz, and the
boundary accuracy is 0.030 mm. In the blue parallel laser
fine scanning mode, there are 41 laser lines and the scanning
speed of 1,350,000 times per second, the entire complex sur-
face data can be accurately acquired with millions of points.
Based on the application requirements of different fields,
multiple measurement modes can be freely switched. It can
output a variety of three-dimensional point cloud data to rep-
resent the measured entire surface, and has a strong ability
to adapt to different harsh work environments. The advan-
tages ofKSCAN-Magic contain largemeasurement distance,
anti-interference, large density of measurement points, high

Fig. 2 KSCAN-magic

accuracy and strong robustness. Generally, it is only affected
by the self-accuracy, the light intensity of the laser beam
and the surface characteristics of the measured object, which
is not easily affected by external light or random operation
error. Themeasured rotor curved surface andmeasured cylin-
der head surface are shown in Fig. 3. Due to the reasons
of surface structure, roughness, texture characteristics and
themeasurement environment, the rawmeasured point cloud
data exists a number of isolated noisy points, obvious out-
liers and redundant points, which have a large impact on
the geometrical shape and spatial distribution of the curved
surface. Therefore, it is necessary to eliminate these obvi-
ous wrong points without changing the intrinsic properties
of the curved surface and preserve feature details such as
textures and edges. The classical filter assumes that the dis-
tance between each point and its neighboring points in a point
cloud data obeys a certain statistical distribution, which is
obtained by calculating the distance between each point and
its k neighboring points. Due to external disturbances, error
points usually occur far away from other dense point cloud
regions, which leads to the distribution of error points largely
failing to conform to this statistical distribution. Therefore,
the error points should be removed.

The classical statistical filtering is adopted to achieve
the point cloud data denoising process, which consists of
three steps including nearest neighbor average distance cal-
culation, distance threshold definition and wrong points
removing. The specific denoising process is as follows: First,
calculate the distance di |i � 1, 2, . . . k from point p1(x1,
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Fig. 3 a Rotor, b Measured rotor surface, c Measured cylinder head

Fig. 4 a Initial point cloud Q0,
b Preprocessed point cloud Q

y1, z1) to its k neighboring points. Assume the average of
d1, d2 . . . dk is d, then these distances obey the Gaussian
distribution f (d) with a mean of μd and a variance of σd ,
where d � 1

k

∑k
l�1

√
(x − x1)2 + (y − y1)2 + (z − z1)2 and

f (d) � 1
σd

√
2π

e
− (d−μd )

2

2σ2d . Then recalculate the distance d ′
i

|i � 1, 2, . . . k from point p1(x1, y1, z1) to its k neigh-
boring points, k is generally defaulted to 4. When it satisfies
di ∈ (μd −3σd , μd +3σd ), reserve the point, otherwise elim-
inate it. Finally repeat the above operations for all points in
the point cloud data, the preprocessed point cloud data can be

obtained. As for a measured curved surface M represented
by the initial point cloud Q0, an example of point cloud data
denoising is shown in Fig. 4, and Q is the preprocessed point
cloud.

Laplace–Beltrami spectrum calculation

Benefitting from the superiority of LB spectrum intrinsic
property, it is independent of the ambient space coordi-
nates of the embedded object, thereby being widely used
to describe the geometry of workpieces. Moreover, the LB
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spectrum can be compared between workpieces without pre-
registration and localization, totally indicating the shape
change of continuous machining workpieces in the produc-
tion line. Therefore, it can be considered as a geometric shape
indicator for the curved surfacemonitoring, such as the blade
profile deformation, the cylinder head combustion chamber
volume and aircraft cabin surface variation.

In order to obtain the accurate LB spectrum, it has already
appeared many calculation approaches including localized
mesh Laplacian approximation, FEM approximation and so
on. The localized mesh Laplacian approximation derives
from the theory of heat diffusion and wave propagation in
Physics (Zhao & Castillo, 2021), which is only suitable for
closed surfaces without boundaries. In contrast, the advan-
tage of FEM approximation is that not only can be applied
to open surfaces or volumetric data, but also can handle the
boundary conditions. Hence, one of the FEM approximation
approaches called Galerkin variational formula is adopted to
calculate LB spectrum by solving Helmholtz equation in this
paper. The detailed procedures are explained as follows.

Step 1: Surface parameterization
It is necessary to discretize surface when solving the

LB spectrum, for a two-dimensional manifold on a three-
dimensional surface,which is represented byp(u, v) � (x(u,
v), y(u, v), z(u, v))′

∣∣(u, v) ∈ D ⊂ R
2 .

Step 2: Shape function definition
The shape function is mainly aim at each triangle point

of the triangular mesh data. convert the curved surface M
of point cloud data into triangular mesh data. Generally, the
shape functions hl(u, v) are usually characterized by algebraic
polynomial approximations such as:

hl (u, v) � cl, 1 + cl, 2u + cl, 3v (6)

where l represents the nodes in triangles, and cl, i represents
the coefficients, u and v denote local coordinates respec-
tively. hl (u, v) is linear shape function which derives from
three vertices of a triangle. There are many kinds of shape
equations, the linear shape function is the simplest and fast
approach. With the requirements of the production takt and
real-time monitoring, the linear shape function is used in this
paper. The specific solution steps are as follows:

Condition 1: Considering the triangular mesh data only
contains one triangle, and the initial coordinates of three
nodes of the triangle are P1(0, 0, 0), P2(0, 1, 0), P3(1, 0, 0).
The triangle can be expressed parametrically asp(u, v) � (u,
v, 0) with 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, u + v ≤ 1 and the initial
coordinates can be transformed into three nodes P1 � p(0,
0), P2 � p(0, 1), P3 � p(1, 0), the initial metric tensor g0
can be obtained by:

(7)

g0 �
⎛

⎜⎝
g11 g12

g12 g22

⎞

⎟⎠ �
⎛

⎜⎝
∂p(u, v)

∂u · ∂p(u, v)
∂u

∂p(u, v)
∂u · ∂p(u, v)

∂v

∂p(u, v)
∂u · ∂p(u, v)

∂v
∂p(u, v)

∂v
· ∂p(u, v)

∂v

⎞

⎟⎠

�
⎛

⎜⎝
1 0

0 1

⎞

⎟⎠ � I

where ∂p(u, v)
∂u � (1, 0, 0) and ∂p(u, v)

∂v
� (0, 1, 0). Subse-

quently, as for the first node P1 � p(0, 0) of the triangle,
the shape function h1(u, v) can be solved in the following
equations:

h1(u, v) � c1, 1 + c1, 2u + c1, 3v|h1(P1) � 1,

h1(P2) � 0, h1(P3) � 0 (8)

and it can obtain c1, 1 � 1, c1, 2 � −1, c1, 3 � −1 and h1(u,
v) � 1−u −v. It is noted that the shape function of k th node
of the triangle satisfies hl (Pk) � 1(l � k) and hl (Pk) � 0
(l 
� k).

Condition2:Considering triangularmeshdatawith r (r >

1) triangles, for the coordinates of three nodes of a random
triangle P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3), it can
be converted into Condition 1 (Pk � p(u, v) � (u, v, 0)
|k � 1, 2, 3 ) through the curved surface parameterization:

p(u, v) � (x1 + u(x3 − x1) + v(x2 − x1),

y1 + u(y3 − y1) + v(y2 − y1),

z1 + u(z3 − z1) + v(z2 − z1)) (9)

and it still satisfy P1 � p(0, 0), P2 � p(0, 1), P3 � p(1,
0). Conversely, the metric tensor g is recalculated for the
parameterization:

g �
(

‖p3 − p1‖2 (p3 − p1) · (p2 − p1)
(p3 − p1) · (p2 − p1) ‖p3 − p1‖2

)
(10)

where ∂p(u, v)
∂u � (x3 − x1, y3 − y1, z3 − z1) and

∂p(u, v)
∂v

�
(x2 − x1, y2 − y1, z2 − z1). And The metric tensor g is the
most important parameter in solving the LB spectrum.

Step 3: Helmholtz equation definition and solution
It is necessary to perform variable separation on the LB

operatorwhen solving theLB spectrum, thereby leading to an
eigenproblem called Helmholtz equation. A classical FEM
approximation approach namedGalerkin variational formula
is used to find the function f defined on the curved surface
M , which satisfies the following equation:

−
∫

M
∇ f ·∇φdV � λ

∫

M
φ f dV (11)
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where
{

f N � ∑N
m�1 umhm | f ∈ V

}
is a characteristic

function consists of several eigenfunctions hm , um is the
coefficient and λ is eigenvalue. V and N are respectively the
function space and the number of eigenfunctions. ∇φ · ∇ f
is named the first differential parameter of Beltrami, which
is defined as:

∇φ · ∇ f � ∂φ′g−1∂ f �
∑

i , j
gi j∂iφ∂ j f (12)

then, the Eq. (11) can be transformed into N equations:

−
∫

M

∑
gi j∂i h j∂ j

(∑N

m�1
umhm

)
dV � λ

∫

M
hl

(∑N

m�1
umhm

)
dV , l � 1, 2, . . . N

∑N

m�1
um

(
−

∫

M

∑
gi j∂i h j∂ j hmdV

)
� λ

∑N

m�1
um

(∫

M
hlhmdV

)
, l � 1, 2, . . . N

(13)

and the N equations can be translated as a generalized eigen-
value problem in the form of a matrix:

AU � λBU (14)

Equation (14) is called characteristic equation, whereU �
{ui |i � 1, 2, . . . , n } denotes the set of coefficients, A and
B both are Gram matrices which satisfy:

Alm � −〈∇hl , ∇hm〉 � −
∑

i , j
gi j

∫

M
∂i hl∂ j hmdV (15)

Blm � 〈hl , hm〉 (16)

Due to dV � √
det(g)dudv. By virtue of this, the analyt-

ical expression of matrices A and B are changed as follows:

Alm � −
∫

M

∑
gi j∂i h j∂ j hm

√
det(g)dudv (17)

Blm � √
det(g)

∫

M
hlhmdudv (18)

where l and m denote the indexes of the (l, m)th element in
matricesA andB. It is worth noting that thematricesA andB
both are sparse and symmetric, which ensure LB spectrum is
real spectrum. At the same time, the LB spectrum estimation
is high-efficiency and accurate based on the matrix sparsity.
Finally, the LB spectrum {λi }∞i�0 is obtained.

Spatial geodesic clustering degree definition

Spatial geodesic clustering degree is a significant index to
characterize the distribution of points within the point cloud
data. Current researches mainly focus on efficient extraction
approaches of the feature structure of point cloud data, and

little attention is paid to the distribution of the point cloud
itself. The previous approaches of representing the point
cloud data distribution are generally to divide the point cloud
data into a number of standardized blocks. Then the number
of points falling within each block is calculated respectively,
and the point cloud data distribution is described by the fur-
ther statistical operations including arithmetic mean value
and weighted mean value of point in these blocks. Likewise,
the distance between points in the point cloud data is also
directly used as the distributionmetric. The above approaches
cannot reflect the distribution of point clouds well and sensi-

tively. Therefore, it is crucial to obtain representative feature
parameters which can reveal the real distribution information
of the point cloud data in curved surface monitoring. A new
feature parameter called spatial geodesic clustering degree
(SDCD) is defined in this paper, which is based on the pro-
posed spatial geodesic distance matrix. The SDCD adopts
the geodesic distance between points, and fully reflects the
spatial correlation of the point cloud. The definition process
of SDCD is summarized as:

Step 1: Point cloud pre-segmentation
Due to the numerous the large number and uneven dis-

tribution of curved surface point clouds, it is essential to
implement point cloud pre-segmentation. As for the mea-
sured curved surface M , it is represented by the point cloud
Q. The determination of segmentation size should corre-
spond to the dimensions and distribution attributes of the
point cloud. Choosing a larger segmentation size would yield
point cloud data with reduced detailing, while selecting a
smaller segmentation size could lead to blocks containing
only a few points. As a result, it is essential to pinpoint the
optimal block size within a suitable range. Set B as the seg-
menting interval, W × H as the initial segmenting size, n
as the number of segmented point cloud block, and then the
point cloud Q can be divided into a series of segmented point
cloud block Qn , and the size of Qn satisfies:

(19)

Qn � W Qn × H Qn � [W +(n −1)× B]× [H +(n −1)× B]

where W Qn × H Qn denotes the segmenting size of the nth
segmented point cloud.

Step 2: Initial clustering degree pre-calculation
The various segmenting sizes have a great impact on the

distribution description of the point cloud Q. In order to

123



Journal of Intelligent Manufacturing

determine the optimal segmenting size, the initial cluster-
ing degree dsn of each segmented point cloud block Qn is
calculated firstly.

dsn �

�W Q/W Qn�∑
i�1

�H Q/H Qn�∑
j�1

V 2
i j

NT
4
√

Bd
/

Bt

(20)

where W Q and H Q denote the size of the point cloud Q,
NT is the number of the point cloud Q. Bd denotes the sum
of the number of segmented point cloud blocks which exist
points in them, Bt denotes the total number of blocks, Vi j

denotes the number of points of each segmented point cloud
block Qn , i and j denote the indices of blocks.

Step 3: Spatial geodesic distance matrix definition
Spatial correlation describes the relationship between the

point and the neighbor point in the same space region, which
is an important property in spatial statistics. Greary’s C index
is one of the spatial autocorrelation coefficients, the dis-
tribution range of its value is [0,2], and the mathematical
expectation is 1, which is used to distinguish the degree
of spatial autocorrelation. As for the segmented point cloud
block Qn , the Greary’s C index Cn is calculated as:

Cn � (r − 1)

r∑
i�1

r∑
j�1

wi j (dsni − dsnj )

2r S2
r∑

i�1

r∑
j�1

wi j

(21)

r � �W Q/W Qn� × �H Q/H Qn� (22)

S2 �
r∑

i�1

(dsni − ds)2
/

r (23)

where r denotes the number of the segmented point cloud
block Qn , dsni and dsnj denote of the spatial geodesic clus-
tering degree the i th and j th segmentedpoint cloudblock Qni

and Qnj , ds denotes the spatial geodesic clustering degree
of the point cloud Q, and wi j denotes the element of the
spatial distance matrix. There are different distance matrices
such as spatial adjacency matrix, spatial geographical dis-
tance matrix and spatial economic distance matrix, which
have directly influence on the accuracy of Greary’s C index.
since the curved surface belongs to the three-dimensional
point cloud, and it has curvature discontinuity, thereby the
traditional two-dimensional spatial distance matrices are not
suitable for the curved surface,which cannot reflect the three-
dimensional feature information. Therefore, a new spatial
distance matrix named spatial geodesic distance matrixGW
is proposed, which can describe the distribution of the curved
surface point cloud.

GW(i , j) � min
1≤k≤n

(d(i , k) + d(k, j)) (24)

The element gwi j of spatial geodesic distance matrix
GW represents the geodesic distance between the center
of gravity of segmented point cloud block Qni and Qnj .
The spatial geodesic distance matrix GW reflects the spe-
cific positional relationship between point cloud blocks and
blocks, which clarify further point cloud spatial correlation.
Then the Greary’s C index Cg

n is recalculated as:

Cg
n � (r − 1)

r∑
i�1

r∑
j�1

gwi j (dsni − dsnj )

2r S2
r∑

i�1

r∑
j�1

gwi j

(25)

Step 4: Spatial geodesic clustering degree
According to the segmented point cloud block Qn , it is

essential to determine the optimal segmenting size W Qk ×
H Qk and the optimal number of segmented point cloud block
k. The spatial geodesic clustering degree computed with the
optimal segmenting size is defined as spatial geodesic clus-
tering degree dsg:

dsg �

�W Q/W Qk�∑
i�1

�H Q/H Qk�∑
j�1

V 2
i j

NT
4
√

Bd
/

Bt

(26)

The number of the curved surface point cloud is large
enough, and it obeys normal distribution approximately in
statistics. With the assumption of a normal distribution, Z
test is adopted to implement significance test for Greary’s C
index Cg

n :

Z (Cg
n ) � Cg

n − 1√
V ar [Cg

n ]
(27)

where it satisfies V ar [Cg
n ] �

(
(2S1+S2)(r−1)−4S20

2(r+1)S20

)
, S0 �

r∑
i�1

r∑
j�1

gwi j , S1 � 1
2

r∑
i�1

r∑
j�1

(gwi j + gw j i )2, S2 �
r∑

i�1

(
r∑

j�1
gwi j +

r∑
j�1

gw j i

)2

.

At the significance level of 5%, if Z (Cg
n ) > 1.96, then

show that the Greary’s C index is significant and the spa-
tial units within the study area attribute values are spatially
significantly correlated. Therefore, the spatial autocorrela-
tion degree of the attribute values can be judged based on
the magnitude of the Greary’s C index and then the optimal
segmenting size of spatial autocorrelation can be found.
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Multivariate control chart construction

Multivariate control chart is a powerful tool for monitor-
ing small drifts in multivariate systems including chemical
process, semiconductor manufacturing and high-end manu-
facturing equipment with complex curved surfaces, which is
a multivariate extension and promotion of univariate control
chart. In fact, the multivariate control chart is not a simple
superposition of univariate control charts, but a statistical
management approach to control multiple quality parame-
ters at the same time, thereby monitoring the tested sample
from a variety of dimensions and reflecting the product man-
ufacturing process anomalies. Phase II of the control chart
is mainly designed for manufacturing process monitoring,
which is the focus in this paper.

Hotelling T2 control chart is the most familiar and widely
used multivariate process-monitoring and control procedure,
which is adopted to monitor the mean vector of the process.
It is a directionally invariant control chart to detect a shift in
the mean vector depends only on the magnitude of the shift,
not the direction of the shift. Specifically, the statistic T2

represents the square of the distance in the statistical sense
for the combination of different multivariate observations.
Suppose that it has t variances given by x � [x1, x2, . . . ,
xt ], which obeys the multivariate normal distribution. After
the test, m groups of sample data are obtained, and each
group has n test values. Then the sample mean vector xk

and the mean vector of each quality characteristic x j can be
calculated as:

xk � {
x jk | j � 1, 2, . . . , t

} � [x1k , x2k , . . . , xtk]

x j � {
x j | j � 1, 2, . . . , t

} � [
x1, x2, . . . , xt

] (28)

where x jk � 1
n

n∑
i�1

xi jk , x j � 1
m

m∑
k�1

x jk , i � 1, 2, . . . , n,

k � 1, 2, . . . , m, and xi jk denotes the i th observation on the
j th quality characteristic in the kth sample. Let X � xk and
μ � x j , the statistic T2 is defined as:

T2 � n(X − μ)T
∑ −1(X − μ) (29)

where
∑−1 denotes the covariancematrix. Subsequently, the

control limits for T2 control chart in stationary state can be
given as follows:

UCL � t(m − 1)(n − 1)

mn − m − t + 1
Fα, t ,mn−m−t+1

LCL � 0
(30)

In some industrial applications, the subgroup size of the
sample satisfies n � 1, which occurs frequently in chemical
process, structured surfaces and complex curved surfaces.
By virtue of this, a joint control chart called LS-Hotelling T2

is proposed to achieve curved surface monitoring. The joint
statistic LS-T2 consists of Laplace–Beltrami spectrum and
spatial geodesic clustering degree, which is defined as:

T2
L S � (LSX − μ)T

∑ −1(LSX − μ) (31)

where LSX � [
λ,dsg

]
is the bivariate statistic. λ is the set

of Laplace–Beltrami spectrum, which is used to represent
the evolution of curved surface shape. dsg is the set of spa-
tial geodesic clustering degree, which reveals the variation
rules of the distribution of points within the curved surface.
The two variables are statistically independent normally dis-
tributed, thereby indicating the existence state of the curved
surface from different dimensions. The corresponding con-
trol limits for LS-HotellingT2 control chart in stationary state
can be given as follows:

UCL � (m − 1)2

m
βα, t/2, (m−t−1)/2

LCL � 0
(32)

where βα, p, q and Fα, p, q denote β-distribution and F-
distribution at significance level α with parameters p and
q. Comparing with the univariate control chart, the proposed
LS-Hotelling T2 control chart canmonitor the curved surface
from two aspects including the change of the shape and the
distribution of the points, which has a strong sensitivity to
the drifts of the curved surface and captures anomalies of the
process state more quickly.

Numerical simulation

Curved surface simulation

Due to the variable Gaussian curvature, the complex curved
surfaces have various shapes without symmetry or rotational
translation, and cannot be expressed parametrically. Mean-
time, the curved surface profile quality is closely related
to the qualification of the workpieces, but it usually exists
various defects such as scratches, holes and grooves when
the manufacturing process is out-of-control. Hence, it is an
urgent problem tomonitor the curved surface profile, thereby
reflecting the stability of the manufacturing process. In order
to validate the effectiveness of the proposed curved surface
monitoring approach, a series of curved surfaces are gener-
ated by the function:

M0(x , y) � η ∗ y2|x ∈ [−200, 200] , y ∈ [−200, 200] (33)

where η denotes a parameter to determine the curvature of
curved surfaces. In this paper, forty curved surfaces Mi |i �
1, 2, . . . , 40 of size 200 mm × 200mm are simulated, and

123



Journal of Intelligent Manufacturing

Fig. 5 a A normal surface, b A
defective surface with local
scratches

they are assumed to be manufactured in a steady production
process. The surfaces Mi |i � 36, 37, . . . , 40 are simulated
as out-of-control surfaces with small defects. As an example,
a normal surface and a defective surface with local scratches
are simulated in Fig. 5 respectively.

Since there are no large number of noisy points, obvious
outliers and redundant points on the these simulated curved
surfaces, and the point cloud preprocess is unnecessary in the
simulation experiment. Firstly, theLBspectrumof these forty
surfaces are calculated respectively. During the LB spectrum
calculation, the shape function at each triangle point of the
triangular mesh data of the curved surface is obtained as
the algebraic polynomial approximation hl (u, v) � h1

l
(u,

v) � cl, 1 + cl, 2u + cl, 3v. The characteristic equation is
obtained by substituting the shape function hl (u, v), and the
matrices A and B are solved by the partial derivative of the
shape function. The set of eigenvalues {λi |i � 1, 2, . . . ,
40 } in the characteristic equation can be obtained, namely
the LB spectrum of the curved surface. Since each point in
the triangular mesh data can obtain an LB spectrum value,
and the first fifty eigenvalues are relatively stable (Zhao &
Castillo 2022). When the LB spectrum is calculated, the first
fifty spectrum values demonstrate a consistent upward trend
(Zhao & Castillo 2022), and each point cloud has similar
LB spectrum values. Therefore, the average value of the first
fifty eigenvalues is adopted as the representative LB spec-
trum value for the curved surface, and the LB spectrum of
the simulated forty curved surfaces are shown in Table 1.

Then, setting the initial segmenting size as W × H �
5 mm×5 mm, the cutoff segmenting size as 15 mm×15 mm,
and the segmenting interval B � 1 mm.Hence, the simulated
forty curved surfaces are segmented as a series of segmented
point cloud block Qn � W Qn × H Qn � [5+ (n −1)×1]×
[5 + (n − 1) × 1].

The spatial geodesic distance matrix GW is constructed
based on the geodesic distance GW(i , j) and the spatial
geodesic clustering degree dsg is calculated for different
segmented block sizes. Greary’s C index and Z-test are cal-
culated according to different spatial geodesic clustering
degree. Figures 6 and 7 show the result of Greary’s C index

and Z-test for the first simulated curved surface, respectively.
Since Greary’s C satisfies Cn ∈ [0, 2], Cn < 1 means pos-
itive spatial autocorrelation, Cn > 1 means negative spatial
autocorrelation, Cn � 1 means there is no spatial auto-
correlation, and Cn � 0 or Cn � 2 denotes the strongest
spatial autocorrelation. According to Greary’s C index and
Cg

n Z (Cg
n ) > 1.96, it shows that theGreary’sC index is signif-

icant and the spatial units which segmented by each size are
spatially significantly correlated, and the segmented block
size 5 mm × 5 mm with the smallest Greary’s C index is
selected as the optimal block size. Repeat the above proce-
dures for the rest 39 simulated curved surfaces, it finds that the
optimal block size is still 5 mm × 5 mm, that is because the
distribution of these curved surfaces is roughly similar and
the variations among the curved surfaces belong small shifts.
Therefore, all the curved surfaces of 200 mm × 200 mm is
divide into 1600 pieces with 5 mm × 5 mm. Table 2 shows
the spatial geodesic clustering degree values based on the
optimal block size of the simulated forty curved surfaces.

To ensure the normality of the data, the normality of the
two variables is assessed using the Anderson–Darling test
in this paper. Table 3 shows the normality test results, the
Anderson–Darling statistics for two variables do not exceed
the critical values and obey normal distribution. The results
indicates that the data distribution of the variable aligns sta-
tistically well with a normal distribution, which ensuring the
validity and applicability of two variables.

Finally, the LB spectrum and spatial geodesic cluster-
ing degree of the simulated forty curved surfaces are used
to construct the statistic joint multivariate statistic T 2

L Si �
n(LSXi − μ0)

′ ∑−1(LSXi − μ0)|i � 1, 2, . . . 40 , and
LSXi � [λi , dsgi ] is themass characteristicmatrix. Figure 8
shows the monitoring result of the numerical simulation
using the proposed LS-Hotelling T2 control chart, and the
control limit UCL � 9.98. It can be seen that the LS-T2

statistic of the 36th–40th surfaces with defects are signifi-
cantly out of the control limit, and the control chart issues an
alarm in time. Moreover, it demonstrates that the proposed
approach can effectively detect the small shifts of curved
surface profile during the manufacturing process.
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Table 1 LB spectrum of the
simulated forty curved surfaces Sample number M1 M2 M3 M4 M5 M6 M7 M8

LB spectrum 0.0518 0.0491 0.0540 0.0536 0.0473 0.0571 0.0429 0.0539

Sample number M9 M10 M11 M12 M13 M14 M15 M16

LB spectrum 0.0576 0.0519 0.0329 0.0579 0.0607 0.0569 0.0475 0.0406

Sample number M17 M18 M19 M20 M21 M22 M23 M24

LB spectrum 0.0548 0.0494 0.0590 0.0616 0.0521 0.0543 0.0437 0.0402

Sample number M25 M26 M27 M28 M29 M30 M31 M32

LB spectrum 0.0515 0.0520 0.0541 0.0593 0.0472 0.0519 0.0516 0.0586

Sample number M33 M34 M35 M36 M37 M38 M39 M40

LB spectrum 0.0614 0.0537 0.0597 0.0180 0.0593 0.0567 0.0388 0.0522

Fig. 6 Greary’s C line chart of the first simulated curved surface with different segmented block sizes

Fig. 7 Z-test line chart of a part in different segmented sizes
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Table 2 Spatial geodesic
clustering degree data of each
surface sample

Sample number M1 M2 M3 M4 M5 M6 M7 M8

SDCD 3.4790 3.5086 3.4836 3.6136 3.5260 3.4118 3.4495 3.5238

Sample number M9 M10 M11 M12 M13 M14 M15 M16

SDCD 3.4779 3.5406 3.4460 3.5287 3.5322 3.5516 3.4292 3.5310

Sample number M17 M18 M19 M20 M21 M22 M23 M24

SDCD 3.4969 3.4584 3.5408 3.5433 3.4628 3.5278 3.59978 3.5619

Sample number M25 M26 M27 M28 M29 M30 M31 M32

SDCD 3.4983 3.4731 3.5293 3.5309 3.4946 3.5225 3.4356 3.5417

Sample number M33 M34 M35 M36 M37 M38 M39 M40

SDCD 3.4695 3.4813 3.3861 3.5753 4.0981 4.2641 4.0480 4.0366

Table 3 Normality test results of
curved surface simulation Significance level P value Anderson–Darling statistic Critical value

SDCD value 0.05 0.0005 0.6368 0.7368

LB spectrum value 0.05 0.0005 0.5297 0.7368

Fig. 8 LS-T2 control chart of numerical simulation

Monitoring approaches comparison

For comparison, two methods commonly used in the past
literature of curved surface profile monitoring are selected.
The curved surface profile monitoring approaches proposed
by Zhao and Castillo (2022) and Colosimo et al. (2014)
are also applied to the same numerical simulation, which
are widely used in non-Euclidean surface profile monitor-
ing. Zhao and Castillo (2022) proposed a registration-free
approach based on the Laplace–Beltrami spectrum to mon-
itor the shape variation. The main idea is to calculate the
first fifty LB spectrums of the parts, and monitoring each LB
spectrum to identify part-to-part shape variation. Colosimo
et al (2014) established a Gaussian process model to mon-
itor deviations between the actual surface and the target

surface. Figures 9 and 10 show the monitoring results of
the DFEWMA (distribution-free multivariate exponentially
weighted moving average) chart and Hotelling T2 control
chart using the approaches of Zhao and Colosimo. From
Fig. 9, the upper control limit UCL is going up and down,
thereby leading to the 3th curved surface is false alarm, the
detective curved surfaces are alarm missing, and the con-
trol limit is extreme at the second sample. From Fig. 10, the
monitoring result is extremely bad, the 4th curved surface
is false alarm, and all the detective curved surfaces are mis-
taken as normal. According to the results of the visualization
in Figs. 8, 9 and 10 among the three approaches, it is obvious
that the above two approaches neither detect the curved sur-
faces with defects significantly, and the proposed approach
can detect the small shifts of curved surface profile.
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Fig. 9 a DFEWMA chart,
b Enlarged view of DFEWMA
chart

Fig. 10 Hotelling T2 control chart obtained by Colosimo et al.
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Fig. 11 a Blade, bMeasured blade surface

Furthermore, in order to quantitatively evaluate the perfor-
mance of various monitoring approaches, the Average Run
Length (ARL) is adopted to measure of each control chart.
ARL is one of evaluation indices for control chart perfor-
mance and sensitivity, and it represents the average number of
sample observations on the control chart from the beginning
of the monitoring process until the first sample observation
falls outside the control limit.When the production process is
steady, the smaller ARL means the earlier fluctuations in the
production process is detected, and the better performance of
the control chart. There are manyways to solve the ARL, this
paper chooses the Monte Carlo Method, and the exact calcu-
lation process of ARL is described as follows: Obtaining the
statistics T2

L S for each sample and control limit of the LS-
Hotelling T2 chart, since T2

L S follows a normal distribution,
then T2

L S satisfies a Gaussian distribution with mean μT 2
L S

and variance σT 2
L S
. Generate 1000 random numbers using

this Gaussian distribution, constructing a stochastic produc-
tion process with these random numbers, repeat the above
steps 1000 times. Counting the number s which exceed the
control limit, the ARL can be calculated as s

1000 .
The ARLs of the three approaches are calculated respec-

tively as shown in Table 4. It is clear that the ARL of the
proposed approach is theminimum,which illustrates the per-
formance of the proposed approach is superior to the other
approaches of Zhao and Colosimox in terms of monitoring
accuracy andmonitoring speed. Therefore, themethod in this
paper is more applicable to point cloud surface data than the
other two methods.

Table 4 The control limit and ARL calculated by two approaches

Approach Control limit ARL

The proposed 9.88 1.1010

Zhao et al – –

Colosimo et al 6.64 2.9400

Case studies

Case study I

With the development of the fields in petrochemical, energy
power and navigation, the reliability, durability and profile
quality of turbine blade surface have attractedmore andmore
attention. The blade is one of the key parts of the steam
turbine. Through the steam turbine blades, the steam flow
converts its own kinetic energy into the kinetic energy of
the steam turbine rotor, and further converting into electrical
energy by the generator set. In the manufacturing process of
the blade, it includes forging ring blanks, turning inner and
outer rings, wire-cutting assembly of the inner back-arc pro-
file, milling of the back-arc profile allowance, fine milling of
the back-arc profile, and polishing of the inner back-arc pro-
file in the vapor path. Cracks, inclusions, shrinkage and other
defects will appear on the surface of the steam turbine blade
during these processes. The working conditions of the tur-
bine blades are extremely harsh. The working environment
temperature of the first stage blade is the highest, which is
close to the inlet steam temperature. Moreover, the blade
moves in the air containing a large amount of water vapor,
the superheated steam will cause high temperature oxida-
tion corrosion to the blade, which will reduce the fatigue
strength of the blade. The working environment of the last
stage blade belongs to the wet steam area, which is easy
to produce electrochemical corrosion. In addition, due to the
influence of natural cooling, a large number of water droplets
are produced in the last stage area of the steam turbine. These
water droplets will cause the gas density in the area to be too
large, which will have a greater impact on the blades. Due to
the above reasons, if the blade has a small quality problem,
this defect will be gradually enlarged in the actual operation,
which will cause the failure of the blade and eventually affect
the safety and reliability of the steam turbine. Therefore, it is
essential to guarantee the surface profile quality of the blade.
The first case study is based on the turbine blade surfaces
which is illustrated in Fig. 11a. The material of the turbine
blade is square steel. This surface is manufactured by rough
milling, semi-finish milling and finish milling. To reduce air
resistance, a hole is machined to gather air and reduce the
reaction force after rough milling, and it has no effect on the
machining process. The whole measuring result is similar
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Fig. 12 a Measured blade point
cloud, b Measured blade point
cloud after denoising

Fig. 13 a Defect of blade
surface: noise points, b Defect of
blade surface: hole

Fig. 14 Greary’s C line chart of a blade surface with different segmented sizes
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Fig. 15 Z-test line chart of a blade surface with different segmented sizes

Table 5 LB spectrum data of
each blade surface sample Sample number Pb1 Pb2 Pb3 Pb4 Pb5 Pb6

LB spectrum 0.0105 0.0106 0.0106 0.0106 0.0106 0.0209

Sample number Pb7 Pb8 Pb9 Pb10 Pb11 Pb12

LB spectrum 0.0208 0.0208 0.0209 0.0208 0.0210 0.0210

Sample number Pb13 Pb14 Pb15 Pb16 Pb17 Pb18

LB spectrum 0.0209 0.0211 0.0046 0.01474 0.0147 0.0018

Sample number Pb19 Pb20 Pb21 Pb22 Pb23 Pb24

LB spectrum 0.0018 0.0018 0.0176 0.0177 0.0178 0.0046

Sample number Pb25 Pb26 Pb27 Pb28 Pb29 Pb30

LB spectrum 0.0169 0.0116 0.0140 0.0018 0.0002 0.0015

as Fig. 11b. Therefore, it is necessary to monitor the profile
quality of the turbine blade surface. Thirty point cloud data
samples of different blade surfaces are measured by the 3D
laser scanning instrument. The first twenty-five blade sam-
ples (Pbi |i � 1, 2, 3, ..., 25 ) are manufactured in a stable
and controlled production process without abnormal factors.
Figure 12a shows any one of the first twenty-five blade sur-
face samples. By adding small interference factors to make
the production process out of control, the rest five blade sur-
face samples (Pbi |i � 26, 27..., 30 ) are obtained. Figure 13
shows two types of defects occurred on the blade surfaces.
Point cloud data denoising are performed on the measured
thirty blade surface samples, and Fig. 12b shows one of the
surfaces after denoising. Table 5 shows the LB spectrum of
each blade surface sample.

Setting the initial segmenting size as W × H � 5 mm ×
5 mm, the cutoff segmenting size as 15 mm × 15 mm, and
the segmenting interval B � 1 mm. Hence, the thirty blade
surface samples are segmented as point cloud blocks Qn �
W Qn × H Qn � [5 + (n − 1) × 1] × [5 + (n − 1) × 1]. The
spatial geodesic clustering degree is calculated for different

block segmenting sizes, and Greary’s C index and Z-test are
calculated respectively. Figures 14 and 15 show the result of
the first blade surfaces. It can be seen the optimal block size
is selected as 6mm × 6mm for spatial geodesic clustering
degree calculation. Repeat the above procedures for the rest
blade surfaces, the optimal block size is still 6mm × 6mm.
Table 6 shows the spatial geodesic clustering degree of each
blade surface sample.Meantime, Table 7 shows the normality
test results, the results of Anderson–Darling test show that
the normality of the two variable is satisfied.

Figure 16 shows the LS-T2 control chart constructed by
the LB spectrum and the spatial geodesic clustering degree of
blade surface samples. It is obvious that the defective blade
surfaces are detected timely by the LS-T2 control chart and
alerting when it first appears. Therefore, the results indicate
the proposed monitoring approach can accurately identify
the variations of blade surface profiles, thereby being applied
well for the onlinemonitoring of turbine blademanufacturing
process.
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Table 6 Spatial geodesic
clustering degree data of each
blade surface sample

Sample number Pb1 Pb2 Pb3 Pb4 Pb5 Pb6

SDCD 52.9183 53.5568 53.7380 53.6500 52.23409 50.51299

Sample number Pb7 Pb8 Pb9 Pb10 Pb11 Pb12

SDCD 51.8031 53.2738 53.6960 49.6470 46.6661 47.9185

Sample number Pb13 Pb14 Pb15 Pb16 Pb17 Pb18

SDCD 50.2300 49.7390 45.4900 52.5929 53.1806 53.8910

Sample number Pb19 Pb20 Pb21 Pb22 Pb23 Pb24

SDCD 53.1645 49.4324 46.891 45.2623 47.3015 43.5512

Sample number Pb25 Pb26 Pb27 Pb28 Pb29 Pb30

SDCD 48.0536 61.4525 68.8703 60.5642 56.9785 60.2942

Table 7 Normality test results of
blade surface study Significance level P value Anderson–Darling statistic Critical value

SDCD value 0.05 0.0373 0.7316 0.7811

LB spectrum value 0.05 0.0014 0.6571 1.3401

Fig. 16 Control chart of blade surface

Case study II

The inner surface of the cylinder head combustion chamber
is a complex three-dimensional surface which is cast from
a mold. The cylinder head is one of the most critical parts
of the engine. The shape and internal structure of the engine
cylinder head are complex. It has the characteristics of multi-
cavity and intersecting holes. The surface curvature and wall
thickness change dramatically, and the forming consistency
is poor. The cylinder head has an important influence on the
service performance and reliability of the engine. There are
many processing procedures and complex processes, and the
strict requirements of the manufacturing errors. The process-
ing of cylinder head mainly includes casting, rough milling,
semi-finishing milling, finishing milling and so on. Firstly,

the inner surface of the cylinder head combustion cham-
ber is obtained by casting. Due to long-term contact with
the casting material at high temperatures, the mold easily
wears which affects the combustion chamber surface shape.
Then the bottom surface of the cylinder head is machined by
rough milling, semi-finishing milling and finishing milling,
and the volume of the combustion chamber is controlled
by the milling depth. Milling process will produce burrs,
scratches and other defects on the surface of the engine cylin-
der head combustion chamber. Moreover, the difference of
milling depths among cylinders will lead to poor consistency
of combustion chamber surface forming and fluctuation of
surface profile quality, thereby affecting the performance of
the engine. The second case study is based on a surface of
cylinder head combustion chamber which is illustrated in
Fig. 17a. Thematerial of the cylinder head combustion cham-
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Fig. 17 a Cylinder head combustion chamber, b Measured cylinder
head combustion chamber

ber is Cast iron FC250. This surface is amajor sealing surface
in automotive powertrain and the measuring result is shown
Fig. 17b.

Thirty raw point cloud data of the cylinder head com-
bustion chamber surfaces can be obtained by the 3D laser
scanning instrument. The cylinder heads are produced in a
stable and controlled production process and free from acci-
dental influences. The controlled cylinder head samples can
be obtained as Pci |i � 1, 2, 3, . . . 30 . Figure 18a shows
any one of the combustion chamber surface samples. Point
cloud data denoising are performed on the combustion cham-
ber surface samples, and Fig. 18b shows the corresponding
combustion chamber surface samples after point cloud data
denoising.

Calculated the LB spectrum value and spatial geodesic
clustering degree value for these thirty combustion chamber
surfaces data. Table 8 shows LB spectrum values for each
combustion chamber surface.

Setting the initial segmenting size as W × H � 1mm ×
1mm, the segmenting interval B � 2mm, and the cutoff seg-
menting size as 15mm×15mm.Hence, the thirty combustion
chamber surface samples are segmented as point cloudblocks
Qn � W Qn × H Qn � [5 + (n − 1)× 2]× [5 + (n − 1)× 2],
and calculate the corresponding spatial geodesic clustering
degree for different block segmenting sizes. Greary’s C index
and Z-test are calculated respectively, Figs. 19 and 20 show
the result of the combustion chamber surface samples. It can
be seen the optimal block size is selected as 1mm×1mm for
spatial geodesic clustering degree calculation.

Repeat the aboveprocedures for the rest blade surfaces, the
optimal block size is still 1mm×1mm, andTable 9 shows spa-
tial geodesic clustering degree for each combustion chamber
surface.Meantime, Table 10 shows the normality test results,

the results of Anderson–Darling test show that the normality
of the two variable is satisfied.

Figure 21 shows the LS-T2 control chart constructed by
using the LB spectrum and spatial geodesic clustering degree
values of the combustion chamber surfaces, and it can be
seen that there are no out-of-control surfaces. Therefore, the
results indicate the proposed monitoring approach has a high
control limit, which can effectively avoid the false alarm of
combustion chamber surface profiles, thereby being a pow-
erful tool for in-control combustion chamber manufacturing
process monitoring.

Conclusions

In this paper, a novel curved surface profile monitoring
approach based on geometrical-spatial joint features is pro-
posed. The Laplace–Beltrami spectrum is developed to
characterize the shape information of the curved surface, and
it is an inherent measure of the three-dimensional curved
surface manifold which does not change with the rigidity
of the parts or the change of environmental coordinates. A
new method of extracting point cloud distribution features
is proposed, which overcomes the drawbacks of the repre-
sentation local distribution information of the point cloud in
traditional density extraction methods. The feature is called
the spatial geodesic clustering degree, which represents all
the spatial distributions information of the curved surface
and performs well in both the density and randomness of
the point cloud distribution. Laplace–Beltrami spectrum and
spatial geodesic clustering degree are constructed to establish
the LS-Hotelling T2 control chart and realize curved sur-
face monitoring. The proposed monitoring approach takes
full advantage of the entire wealth information on the high-
density point clouds and can detect the small shifts of
non-Euclidean curved surfaces. The effectiveness of the pro-
posed monitoring approach is validated by the numerical
simulation and real-world engineering surfaces case studies.
The proposed approach can achieve non-Euclidean surface
profile monitoring and identify the stability of the manufac-
turing process, which can provide strong technical support
for ensuring themanufacturing process quality. However, the
monitoring scheme in this paper is based on the Hotelling T2

control chart, it is possible to design a control chart suitable
for various probability distribution of part quality character-
istic data, which is one of the next research directions.
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Fig. 18 a Normal combustion
chamber surface, b combustion
chamber surface after denoising

Table 8 LB spectrum data of
each combustion chamber
surface sample

Sample number Pc1 Pc2 Pc3 Pc4 Pc5 Pc6

LB spectrum 0.0258 0.0261 0.0264 0.0096 0.0454 0.0422

Sample number Pc7 Pc8 Pc9 Pc10 Pc11 Pc12

LB spectrum 0.0109 0.0109 0.0454 0.0423 0.0518 - 9.6838E-19

Sample number Pc13 Pc14 Pc15 Pc16 Pc17 Pc18

LB spectrum 0.0499 0.0511 0.0123 0.0110 0.0257 0.0124

Sample number Pc19 Pc20 Pc21 Pc22 Pc23 Pc24

LB spectrum 0.0261 0.0109 0.0472 0.0508 0.0506 0.0518

Sample number Pc25 Pc26 Pc27 Pc28 Pc29 Pc30

LB spectrum 0.0504 0.0107 0.0471 0.0471 0.0470 0.0482

Fig. 19 Greary’s C line chart of a combustion chamber surface with different segmented sizes
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Fig. 20 Z-test line chart of a combustion chamber surface with different segmented sizes

Table 9 Spatial geodesic
clustering degree data of each
combustion chamber surface
sample

Sample number Pc1 Pc2 Pc3 Pc4 Pc5 Pc6

SDCD 2.3687 2.2253 2.1680 2.3952 2.1623 2.1376

Sample number Pc7 Pc8 Pc9 Pc10 Pc11 Pc12

SDCD 2.2853 2.2711 2.1245 2.1285 2.1201 2.2910

Sample number Pc13 Pc14 Pc15 Pc16 Pc17 Pc18

SDCD 2.2699 2.1638 2.1934 2.2859 2.3158 2.2420

Sample number Pc19 Pc20 Pc21 Pc22 Pc23 Pc24

SDCD 2.2356 2.2556 2.2856 2.2464 2.2636 2.1155

Sample number Pc25 Pc26 Pc27 Pc28 Pc29 Pc30

SDCD 2.2890 2.3171 2.3873 2.3030 2.3894 2.0963

Table 10 Normality test results
of combustion chamber surface
study

Significance level P value Anderson–Darling statistic Critical value

SDCD value 0.05 0.1752 0.5193 0.6315

LB spectrum value 0.05 0.0005 0.7316 2.0842
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Fig. 21 Control chart of combustion chamber surface
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