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Abstract
The buffer allocation problem (BAP) for flow lines has been extensively addressed 
in the literature. In the framework of iterative approaches, algorithms alternate an 
evaluative method and a generative method. Since an accurate estimation of sys-
tem performance typically requires high computational effort, an efficient generative 
method reducing the number of iterations is desirable, for searching for the opti-
mal buffer configuration in a reasonable time. In this work, an iterative optimization 
algorithm is proposed in which a highly accurate simulation is used as the evaluative 
method and a surrogate-based optimization is used as the generative method. The 
surrogate model of the system performance is built to select promising solutions so 
that an expensive simulation budget is avoided. The performance of the surrogate 
model is improved with the help of fast but rough estimators obtained with approxi-
mated analytical methods. The algorithm is embedded in a problem decomposition 
framework: several problem portions are solved hierarchically to reduce the solution 
space and to ease the search of the optimum solution. Further, the paper investigates 
a jumping strategy for practical application of the approach so that the algorithm 
response time is reduced. Numerical results are based on balanced and unbalanced 
flow lines composed of single-machine stations.
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1 Introduction

A production system can be seen as a set of resources interconnected by a mate-
rial handling system where work-in-process might be held in buffers between two 
sequential stations. These buffers of parts help in reducing the propagation of block-
ing and starvation phenomena along the production system. However, dedicating 
space to maintain interoperative inventories is costly and extends the production 
lead time. For these reasons, the buffer allocation problem (BAP) is an optimization 
problem of high importance for industries where there is a trade-off between pro-
ductivity criteria and design and management costs.

The classical primal BAP considers the total allocated buffer capacity as the 
objective function and the throughput satisfaction as a constraint, and this is known 
in the literature as the primal problem (Gershwin and Schor 2000). The dual prob-
lem, also common in the literature, maximizes the throughput under a constrained 
buffer capacity. This paper focuses on the primal problem. Furthermore, we address 
problems in which the processing times at servers follow general distributions and 
operational dependent failures might occur. With these assumptions, it is difficult to 
obtain accurate estimates of system throughput by using analytical methods. There-
fore, simulation, despite being expensive in terms of execution, is frequently used 
as estimation method. Also, the solution space becomes wide as the number of sta-
tions increases and the search for the optimum gets harder. Hence, algorithms aim to 
obtain a good solution, with less simulation effort.

1.1  State of the art for BAP

A recent and comprehensive review of BAP can be found in Weiss et  al. (2019) 
where a classification of state-of-the-art approaches is proposed. Solving methods 
are classified into three classes: explicit solutions, iterative optimization methods, 
and integrated optimization methods. The first class of explicit solutions provides 
a set of rules or established formulas describing the BAP. The methods in this class 
can only address BAP that are small in size, or with significant limitations due to 
the strong assumptions introduced to make the problem analytically tractable. The 
integrated optimization methods formulate the BAP into a mixed integer linear pro-
gramming (MILP) model. For example, Soyster et al. (1979) use an analytical rep-
resentation of the problem. Other examples build a MILP to find a sample-exact 
solution, e.g., Matta (2008), Helber et al. (2011), Alfieri and Matta (2012), Stolletz 
and Weiss (2013).

Most of the references in literature follow iterative optimization methods to solve 
the BAP: a generative method selects promising buffer allocations and an evalua-
tive method estimates the performance of the given candidate solution (Papadopou-
los et al. 2009). Markov chain analysis, decomposition methods (Gershwin 1987), 
aggregation methods (Li and Meerkov 2009), and simulation are used as the per-
formance evaluation method with a clear trade-off between the accuracy and the 
computational effort. Enumeration, meta-heuristic and search-based algorithms are 
mostly used as the generative method. For instance, Hillier (2000) enumerates a set 
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of the most promising solutions, Matta et al. (2012) use a surrogate-based optimiza-
tion algorithm with Kriging (more details on Kriging as in Sacks et al. (1989)), Kose 
and Kilincci (2015) combine simulated annealing and genetic algorithm for explor-
ing and exploiting the search spaces, Shi and Gershwin (2016) guide the search with 
the gradient calculated analytically in the evaluative method. Nested partition and 
branch-and-bound are also used (Shi and Men 2003; Dolgui et al. 2007). An effi-
cient generative method can reduce the number of algorithm iterations before reach-
ing a near-optimal solution and can save the effort required in the evaluative method.

Iterative optimization methods are frequently applied in real cases. Unlike inte-
grated optimization methods, iterative optimization methods treat the evaluation 
method as a black-box, i.e., the inner structure of the evaluation method is not con-
sidered in the optimization algorithm, which makes them easy to implement. Nev-
ertheless, the lack of knowledge about the throughput function (e.g., gradient infor-
mation), together with the large search space and the time-consuming evaluation 
method, affect the efficiency of commonly used searching methods (e.g., enumera-
tion method, meta-heuristic, gradient-based method).

Some state-of-the-art approaches use problem decomposition to reduce the com-
putational effort. The BAP is divided into several sub-problems that are easier to 
solve than the final problem (i.e., the nondecomposed problem). The solution of 
each sub-problem helps to solve the final problem. For example, Shi and Gersh-
win (2016) decompose the system into several sub-systems, each representing an 
overlapping portion of the system. The BAP is solved for each sub-system indepen-
dently. Then, the near-optimal buffer allocation of the system is found by combining 
the sub-system’s solutions. Another example is found in Weiss and Stolletz (2015) 
and Weiss et  al. (2018). The authors decompose the system into several sub-sys-
tems whose dimension provides a hierarchical ordering. Starting from the lower 
hierarchy (i.e., single-dimensional BAP), local solutions are found and create exact 
bounds for higher hierarchies that are solved afterward. Despite the advantages of 
problem decomposition approaches, the knowledge obtained at a certain hierarchy is 
exploited only in the form of bounds. A large amount of data about the sub-system’s 
performance is wasted when the algorithm moves to higher hierarchies, although 
these sets of data might contain information that could increase the search efficiency.

1.2  Contribution

This paper proposes an iterative optimization algorithm for the primal BAP in which 
a surrogate-based optimization method is used as the generative method to save the 
effort in the evaluative method, which is simulation. The algorithm is embedded 
in a problem decomposition framework to save the search effort in the generative 
method.

Simulation is used as the evaluative method to accurately estimate the system’s 
throughput, but it is time-consuming. A surrogate model can be created from few 
simulated data to predict the system throughput of the buffer configurations that 
have not been simulated. Thus, promising solutions can be pointed out quickly 
by the surrogate model and the budget for the evaluative method can be carefully 
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allocated. Throughout the paper, this budget is referred to as the simulation budget 
(i.e., the number of candidate solutions that are evaluated using simulation). The 
Extended Kernel Regression (EKR) (Lin et al. 2019) method is used in this paper to 
create the surrogate model since it can improve the accuracy of the built surrogate 
model by combining the simulation data with rough but fast estimators, e.g., analyti-
cal methods and coarse simulations. The surrogate model might be biased in some 
areas of the domain, which may lead to a wrong promising solution. Therefore, both 
the predicted system performance and the quality of the built surrogate model are 
considered to select the promising solutions.

The proposed algorithm is embedded in a problem decomposition framework 
(Weiss and Stolletz 2015), in which the original problem is divided into sub-prob-
lems with different hierarchies. The optimal solutions of sub-problems in lower hier-
archies provide lower bounds to sub-problems in higher hierarchies according to the 
features of the system. Therefore, the search space in the generative method can be 
reduced and the search effort can be saved. In addition, the estimates obtained dur-
ing solving a certain sub-problem can be re-used throughout the problem decompo-
sition hierarchy. Despite these re-used estimates being approximated, they represent 
a part of the system and can improve the accuracy of the surrogate model.

A preliminary version of the algorithm has been analyzed in recent literature 
(Frigerio et al. 2018). The work is herewith extended by considering the prediction 
error of the surrogate model and by including an analytical method in the creation 
of surrogate models. A surrogate-based optimization method is proposed for BAP in 
Matta et al. (2012), in which a surrogate model guides the search in the generative 
method. Differently from Matta et al. (2012), where the Kriging technique is used 
to create the surrogate model with data from a single source, a multi-fidelity sur-
rogate model is created in this paper. The use of multiple sources can increase the 
prediction performance of the built surrogate model, thereby improving the quality 
of selected promising solutions. Also, Matta et al. (2012) consider only the system 
performance estimates and does not include the prediction error, i.e., the quality of 
the surrogate model.

A set of numerical cases shows the accuracy of the surrogate model in terms of 
prediction error. These cases also show that the proposed iterative algorithm is effi-
cient and the benefit of the involvement of an analytical method in the construc-
tion of the surrogate model is significant. The proposed algorithm is more effective 
when the total buffer capacity of the optimal buffer configuration is high, i.e., when 
the required throughput is high. Considering the decomposed problem, reusing data 
can also improve the efficiency of the algorithm. When problem dimension becomes 
high (i.e., long lines), the trade-off between the effort to solve sub-problems and the 
size of cut search space has an important impact on the computational time. Some 
strategies are investigated to improve the results in these cases.

1.3  Paper outline

The paper is divided into five sections. After introducing the problem and the 
related literature in Sect. 1, the proposed iterative algorithm with a surrogate-based 
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generative method is described in Sect.  2. Section  3 describes how the proposed 
algorithm is embedded in a problem decomposition framework. Numerical results 
are provided in Sect. 4. Section 5 concludes the paper.

2  A surrogate‑based solving algorithm

In this section, we formulate the problem in question, and we provide the descrip-
tion of the proposed algorithm.

2.1  Problem description and modeling

The system being studied is a classical flow line composed of S single-server stations 
and S − 1 finite intermediate buffers. For the sake of simplicity, the first machine is 
assumed to be never starved of raw parts and the last machine is never blocked (i.e., 
saturated supply and saturated demand). The blocking after service rule is used for 
stations, although the problem is similar for the blocking before service rule. Let 
us use xs to denote the buffer capacity allocated to the buffer behind station s and 
� = {x1, x2,… xS−1} to denote the vector of decision variables describing the buffer 
allocation along the line.

The total buffer capacity of the line is defined as follows:

The buffer capacity needs to be allocated in order to minimize the total buffer capac-
ity z(�) , while a certain throughput target ytarget is reached. We assume that the 
capacity xs of buffer s is limited by the user-defined upper bound Bs . The BAP is 
formulated as follows:

where the expected throughput y(⋅) of the system is a nonlinear function of decision 
variables � . We model processing times Ts with s = 1,… , S as generally distributed 
random variables. Transportation times are negligible or already included in the pro-
cessing times. Operational dependent failures are also included in the processing 
time distributions.

2.2  Algorithm main structure

The main structure of the proposed algorithm is represented in Fig. 1. The algorithm 
belongs to the category of iterative approaches, and it alternates two main parts: 
evaluation and generation (Papadopoulos et al. 2009). In a general iteration i, buffer 
configuration �i is identified as promising by the generative method. Therefore, sys-
tem performance y(�i) can be accurately obtained using a simulation model as the 
evaluative method.

(1)z(�) =

S−1∑
s=1

xs.

(2)min
{
z(�) | y(�) ≥ ytarget ; 0 ≤ xs ≤ Bs, xs ∈ ℕ,∀s = 1,… , S − 1

}
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We assume the line processes W parts, where W0 parts correspond to the warm-up 
phase. Given proper values for W and W0 , the simulation model provides an accurate 
estimate y(�i) of the expected throughput obtained with buffer allocation �i.

At the first iteration, the surrogate model is built, as described in Sect. 2.3, start-
ing from an initial set �0 of n0 candidate solutions. The initial design �0 is evaluated 
using simulation, and the generative method can start. Then, the generative method 
solves an optimization problem as described in Sect. 2.4. Within this phase, a sur-
rogate model is built to provide both the estimate of the expected throughput ŷ(⋅) 
and the estimated square prediction error ŝ2(⋅) . Hence, the promising solution �i is 
found and evaluated using simulation. In subsequent iterations, the surrogate model 
is updated with new observed (or simulated) data. When the stopping condition is 
satisfied, the algorithm stops.

2.3  A multi‑fidelity surrogate model for BAP

Assume that a certain number of models are available to provide the system per-
formance estimates. In particular, one time-consuming high-fidelity (HF) model, 
i.e., the simulation model, providing highly accurate estimates y(�) , and a certain 
number of low-fidelity (LF) models, i.e., analytical methods, coarse simulations, and 
meta-models, providing approximated estimates quickly.

Fig. 1  Structure of the solving algorithm
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We adopt the Dallery–David–Xie (DDX) algorithm (Dallery et al. 1988) from the 
literature to provide the LF estimate yDDX(�) of system performance. The reason for 
this choice is its easiness of implementation without critical numerical issues. Other 
algorithms could be adopted without changing the approach, e.g., Tolio and Matta 
(1998), Liberopoulos et  al. (2006), Li and Meerkov (2009), Colledani and Gersh-
win (2013). Also, more than one method can be included without requiring a large 
extension to the developed algorithm.

The initial design �0 is composed of n0 design points sampled using a space fill-
ing design we used, as an example, a Latin hypercube sampling (LHS) (McKay et al. 
1979). The system performance at the design points is calculated using both the HF 
and LF models.

The creation of the surrogate model is performed using the Extended Kernel 
Regression (EKR) method (Lin et al. 2019), based on the available information, i.e., 
both HF and LF estimates of all design points � in set �0 , and the LF estimate of the 
unknown point �:

The system performance estimate ŷEKR(�) at a certain buffer allocation � is obtained 
as well as its estimated square error ŝ2

EKR
(�) that indicates the prediction error of the 

surrogate model. More details on how to build the surrogate model using EKR are 
provided in "Appendix."

2.4  Optimization procedure

In the generative method, the built surrogate model is used to guide the search for 
a promising solution. The surrogate model could be biased and the promising solu-
tion provided could be incorrect. Therefore, to balance the exploitation (to find the 
best solution according to the surrogate model) and the exploration (to improve the 
quality of the surrogate model), the expected improvement (EI) criterion (Mockus 
et al. 1978; Jones et al. 1998) is applied. It assumes that the true value of the sys-
tem’s performance follows a prior distribution, e.g., normal distribution, in which 
the mean is affected by the system performance estimate provided and the variance 
is affected by the prediction error. Then, the solution that has the maximal EI com-
pared to the current best solution is considered as the most promising solution. The 
EI of an unknown solution � is herewith defined as follows:

where the current best solution �best is defined as the configuration that has been 
simulated, satisfies the throughput target ytarget , and has the lowest total buffer capac-
ity. The first term in expression (4) is the distance of the � configuration from the 
current best �best in terms of total buffer capacity. The second term is the probability 
that configuration � satisfies the throughput target. When EI is high, it is more likely 
that the current best can be improved.

(3)yEKR(x|y(�0), yDDX(�
0), yDDX(x)) ⇒ ŷEKR(x), ŝ

2
EKR

(x).

(4)EI(�) =
(
z(�best) − z(�)

)
⋅ P

(
y(�) ≥ ytarget

)
.
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The probability that a solution is feasible P
(
y(�) ≥ ytarget

)
 is calculated using the 

system performance estimate ŷEKR(⋅) and the estimated square error ŝ2
EKR

(⋅) provided 
by the surrogate model:

The normal distribution is used according to Lin et al. (2019) which is obtained by 
applying the central limit theorem.

At each iteration i, the following optimization problem is solved to obtain the 
promising point �i:

The above optimization problem is bounded by the current best solution using con-
straint (7), and this is to avoid wasting effort in unpromising areas. To solve this 
problem, algorithms such as meta-heuristics, random searches can be used to pro-
vide good solutions quickly. In Sect. 4, a common genetic algorithm from the MAT-
LAB package will be used for experiments, but other algorithms could be success-
fully adopted.

2.5  Stopping condition

The EI measure defined in Sect. 2.4 is an indicator of solution quality, and it can 
be used to interrupt the algorithm. As EI(�i) decreases, the solution approaches the 
optimum and it is difficult (rather than not possible) to find an improvement. There-
fore, the algorithm is stopped when the maximal EI, found in iteration i, is below a 
certain threshold EItarget:

Under condition (9), the algorithm returns the current best solution �best . Otherwise, 
the algorithm performs a new iteration following a sequence of steps:

• The most promising point �i is evaluated using the HF model.
• If y(�i) ≥ ytarget , the current best solution is updated, i.e., �best = �i.
• The surrogate model is updated by adding �i to the set of design points �0.
• The iteration number is updated: i = i + 1.

It is noteworthy that the �best is selected as the upper bounds of the solution at the 
beginning of the algorithm.

(5)P
(
y(�) ≥ ytarget

)
≈ 𝛷

(
ŷEKR(�) − ytarget

ŝEKR(�)

)
.

(6)�i =argmax
�

EI(�)

(7)s. t.: z(�) < z(�best)

(8)xs ≤ Bs, xs ∈ ℕ
+,∀s.

(9)EI
(
�i

)
≤ EItarget
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The algorithm accuracy can be tuned by decreasing target EItarget . However, as 
EItarget decreases the computational time also increases because the stopping condi-
tion becomes harder to satisfy.

3  The algorithm applied in the problem decomposition framework

The algorithm proposed in Sect. 2 is embedded in a problem decomposition frame-
work where the main BAP is decomposed into several sub-problems of smaller 
dimension. Hierarchical problem decomposition methods are widely used in opti-
mization when the scale of the problem is large. Thus, a bottom-up approach is fol-
lowed as described in Sect. 3.1. Also, when the BAP is decomposed, models with 
different detail levels are used to represent each sub-problem, and bounds are cre-
ated as in Sect. 3.2. An innovative approach is proposed to exploit the knowledge, in 
addition to the bounds, derived from a certain sub-problem (Sect. 3.3).

3.1  Problem decomposition approach

Adopting the problem decomposition approach of Weiss and Stolletz (2015), the 
system is divided into several sub-systems assuming that the first station of each 
sub-system has an unlimited supply (i.e., saturated supply) and that the last station 
is never blocked (i.e., saturated demand). Each sub-system, denoted as M(�, j) , rep-
resents a portion of � + 1 sequential stations of the system. Index j indicates the 
first machine in the sub-system, and j + � indicates the last. A total of S − 1 hierar-
chies is created, and each hierarchy � ∈ [1, S − 1] includes S − � sub-systems, i.e., 
M(�, j)|j = 1,… , S − � . Figure 2 represents an example of system decomposition.

Each sub-system M(�, j) implies a BAP whose dimension � is smaller compared 
to that of the complete system, i.e., S − 1 . Let us denote the optimal solution of sub-
system M(�, j) as the (�)-tuple of buffer capacities from xj to xj+�−1:

Figure 3 represents the main framework of the proposed algorithm embedded in the 
bottom-up decomposition approach. The overall algorithm consists of the following 
steps: 

 (i) Following a bottom-up approach, the first level of hierarchy � = 1 is addressed 
starting from machine j = 1.

 (ii) Focusing on sub-system M(�, j) , the solution �best
(�,j)

 of the associated BAP is 
found using the algorithm described in Sect. 2.

 (iii) A lower bound is created as in Sect. 3.2.
 (iv) Steps (ii), (iii), and (iv) are repeated with the next sub-system ( j = j + 1 ) 

or with the next hierarchy level ( � = � + 1;j = 1 ) until the final problem 
M(S − 1, 1) is solved.

(10)�
best
(�,j)

= {xbest
j

,… , xbest
j+�−1

}.
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Given � and j, the sub-problem in question belongs to hierarchy level � , it includes 
stations s = j to s = j + � , and it has � dimensions. Note that all sub-systems in the 
lower hierarchy have been solved previously since a bottom-up approach is used, 
and their solutions �best

(L,J)
|L < �, J ∈ [1, S − �] exist.

3.2  Creation of lower bounds

The isolated throughput of sub-system M(�, j) is higher than that of a larger system 
with the same corresponding buffer allocation (Weiss and Stolletz 2015). For exam-
ple, assume that the best buffer allocation for system M(2, 1) is �best

(2,1)
= {3, 5} for a 

certain throughput target. This implies that sub-systems M(L, 1)|L > 2 , which 
include M(2, 1), require a total buffer capacity among the first two buffers of at least 
8 buffer slots, i.e., x1 + x2 ≥ z(�best

(2,1)
) = 8.

Fig. 2  System decomposition in sub-systems with stations (represented with circles) and buffers (repre-
sented with triangles). As an example, three hierarchies are reported: the final and complete system of 
hierarchy S − 1 , hierarchy S − 2 composed of two sub-systems of S − 2 sequential machines, and the low-
est hierarchy composed of S − 1 sub-systems of two sequential machines
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The solution �best
(�,j)

 of sub-problem M(�, j) provides a lower bound to all sub-prob-
lems belonging to a higher hierarchy ( L > � ) and including sub-system M(�, j) . 
Therefore, bounds are formalized as follows:

and they are effective for all sub-systems belonging to the following set:

These lower bounds, introduced by Weiss and Stolletz (2015), are added into the 
optimization problem (cf. Eqs. (6)–(8)). They can narrow the search space and 
accelerate the generative method.

3.3  The re‑use of data

Let us consider sub-system M(�, j) and its associated BAP. According to the bot-
tom-up solving approach, sub-systems of lower hierarchies, i.e., L < � , have already 
been solved. As a consequence, the surrogate models of these sub-systems are avail-
able and can provide coarse estimates of sub-system M(�, j) . These coarse estima-
tors can be reused as low-fidelity models to improve the prediction performance 

(11)z(�) ≥ z(�best
(�,j)

)

(12)M(L, J)|L > �;J ∈ [max(1, j + � − L), j].

Fig. 3  The algorithm embedded 
in the problem decomposition 
framework
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of the surrogate model in sub-system M(�, j) . The algorithm can use the following 
models for creating the surrogate model in sub-system M(�, j):

• The HF simulation model of sub-system M(�, j) : y(�,j).
• The LF model of sub-system M(�, j) created with DDX method: y(�,j)

DDX
.

• The LF surrogate models of sub-systems M(� − 1, j) and M(� − 1, j + 1) : y(�−1,j)
EKR

 
and y(�−1,j+1)

EKR
.

The re-use of data might be helpful and, in general, many LF models can be 
included. It is noteworthy that the computational time of the EKR model increases 
with the number of LF models included and the surrogate model becomes redundant 
as the sub-system hierarchy increases. The EKR method autonomously identifies 
which models are more helpful in different regions of the domain and assigns area-
based weights accordingly. Therefore, as an additional improvement, the algorithm 
removes the LF models that have low weights in the whole domain. This feature 
extends the original EKR method in Lin et al. (2019) to further save computational 
time.

4  Numerical results

In this section, experiments are carried out and reported to show the efficiency and 
effectiveness of the proposed method. Section 4.1 describes the scenarios used to 
obtain numerical results. Section 4.2 analyzes the predictive performance of the sur-
rogate model. Then, numerical results are divided into two main parts: the first part 
(Sect. 4.3) focuses on the performance of the algorithm when applied directly to the 
final problem ( M(S − 1, 1) ), and the second part (Sect. 4.4) is devoted to the algo-
rithm within the decomposition framework.

4.1  Scenario description

Numerical results are based on both balanced (denoted as BAL) and unbalanced 
production lines with a maximum buffer capacity of Bs = 30 . Scenarios are created 
by varying the position of the bottleneck: MID denotes a line with a bottleneck in 
the middle, and B2 denotes a line with two bottleneck machines. Short lines are 
analyzed firstly, and the analysis on long lines follows. Furthermore, two produc-
tion rate targets are used to represent high-target (large allocated buffer capacity 
required) and low-target (small allocated buffer capacity required) situations. The 
analyzed scenarios are summarized in Table  1. Notation Mz-XXX-X is used: Mz 
indicates a line of z machines, XXX indicates the position of the bottleneck, and the 
last letter indicates the throughput target (H = high and L = low).

The processing times are assumed deterministic: 0.5 min is required to process 
a part in balanced lines, while 0.45 min is required in unbalanced lines where only 
the bottleneck machines require 0.5 min. Further, machines are unreliable and the 
Times To Repair (TTR) follow a Weibull distribution with � = 5.64 and shape 
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k = 2 . Times to Failure (TTF) are correlated with TTR so that TTF  =  TTR  + Z 
where Z is a random variable distributed accordingly to a Weibull distribution with 
scale � = 22.15 and shape k = 1.5 . The correlation between TTR and TTF is used to 
model that failures requiring long repair times occur less frequently.

The algorithm and the methods included are implemented in the MATLAB envi-
ronment. The Welch method (Law and Kelton 2000) is used to identify simulation 
initial transitory which is 5 × 104 parts for 5 machine lines and 3 × 105 for long lines. 
Simulation length is 2.5 × 105 parts for short lines and 5 × 105 parts for long lines.

The DDX method requires failures and repairs follow geometric distributions 
with rates p and r, respectively. These parameters have been estimated from the 
TTF and TTR distributions, i.e., p̂ = 0.02 and r̂ = 0.1 , to properly represent each 
machine. Furthermore, DDX cannot consider the correlation between TTR and TTF.

4.2  Surrogate model prediction performance

The mean absolute percentage error (MAPE) of the estimated production rate is 
considered as an accuracy index. The MAPE is defined as follows:

where ŷ is the estimator of the production rate to be compared and �j is a checkpoint, 
i.e., a buffer allocation sampled from the solution space to assess the prediction per-
formance of the estimator. Independently from design points, nc checkpoints are 
sampled using LHS. Using HF simulation estimate y as a reference, we compare the 
error of the EKR method and that of the standard Kernel regression (KR) method 
(Wand and Jones 1995) which does not use LF data in surrogate creation. The DDX 
error is also included in the comparison. In this analysis, the optimization is not per-
formed, because the scope is to focus only on the accuracy of the surrogate model.

We only provide results obtained on balanced lines of 5 and 15 equal machines, 
because their performance is generally more difficult to predict than unbalanced 
lines. Similar insights can be obtained with unbalanced lines. In these experiments, 

(13)MAPE =
1

nc

nc∑
j=1

|y(�j) − ŷ(�j)|
y(�j)

× 100(%)

Table 1  Scenario description 
with production rate target 
expressed in parts per minute 
(ppm)

Scenario Number of 
machines

Bottleneck position ytarget (ppm)

M5-BAL-H 5 None 1.52
M5-BAL-L 5 None 1.44
M5-MID-H 5 Middle, i.e., s = 3 1.60
M5-MID-L 5 Middle, i.e., s = 3 1.51
M5-B2-H 5 Two, i.e., s = 2 and s = 4 1.60
M5-B2-L 5 Two, i.e., s = 2 and s = 4 1.51
M15-BAL-H 15 None 1.60
M15-BAL-L 15 None 1.44
M15-MID-H 15 Two, i.e., s = 5 and s = 11 1.60
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the simulated sample path changes at each design point and at each checkpoint. 
Using nc = 104 checkpoints, the DDX method obtains: MAPE = 8.18% for M5-BAL 
and MAPE = 8.21% for M15-BAL. Figure  4 represents the MAPE obtained with 
EKR and KR methods as the number of design points n0 increases. The EKR method 
is more accurate than the KR method, meaning that the use of DDX estimates pro-
vides useful information. From another perspective, the accuracy of DDX is highly 
improved by using few simulation data.

4.3  Benefit of surrogate‑based optimization

The proposed algorithm is denoted as “KR” and “EKR”, respectively, when the sur-
rogate model is created with the KR and EKR methods. The GA available in the 
MATLAB package is used for selecting candidate solutions �i by maximizing the 
expected improvement EI(�) in EKR and KR algorithm settings. The reasons for 
choosing GA are its performance in combinatorial problems and the availability of 
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Fig. 4  MAPE of the surrogate models, created with the EKR and KR methods, for scenarios M5-BAL 
and M15-BAL as the number of design points n0 increases. Boxplots are created with 20 algorithm repli-
cations by varying the initial design �0
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a computer code in the MATLAB package. As already explained in Sect. 2.4, other 
algorithms could be adopted or developed.

Results have been compared with those obtained by an iterative algorithm, 
labeled “SIM”, that does not use a surrogate-based method but uses a pure GA as 
the generative method. Therefore, SIM stops when GA stops. EItarget = 0 is used for 
M5 scenarios, EItarget = 0.02 for M15 scenarios. The DDX method, in the evaluated 
scenarios, underestimates the system throughput. In most of the evaluated scenarios, 
the DDX output for the combination of the buffer capacity upper bounds is lower 
than the defined throughput target, i.e., all solutions are infeasible according to the 
DDX outputs. Therefore, the DDX method cannot provide a promising solution to 
be simulated. For this reason, results obtained using DDX instead of the surrogate 
model are not included in the comparison.

The parameters used for the GA embedded in SIM, KR, and EKR have been cali-
brated. The GA selects the best candidates using a fitness scaling function based on 
candidate ranking. At each iteration, new candidates are generated (population size 
PS), a certain elite is guaranteed to survive (elite fraction EF), and new candidates 
are generated with a crossover function (crossover fraction CF) or with a mutation 
function. We used a scattered crossover function (a random binary vector identi-
fies the variables from parents) and a Gaussian mutation function (unitary scale and 
shrink factor). The algorithm stops when the maximum number of generations MG 
is reached or when the average relative change in the fitness function value over a 
certain number of stall generations SG is less than a certain tolerance T. Factors 
PS, EF, CF, and T have been selected as in Table 2. Factors SG and MG are tuned to 
stop the GA more efficiently.

KR starts with the initial budget n0 = 32 simulations, dedicated to evaluating 
design points, and performs a single simulation run at each iteration. Similarly, EKR 
starts with no = 12 , whereas SIM performs 50 simulations at each iteration (there-
fore it starts at n0 = 50 ). The current best solution improves as simulation budget n 
increases and tends to the optimum.

In order to reduce solution variability, the simulated sample path used to evaluate 
configuration � is fixed for each scenario. Therefore, algorithm replicates differ in 
terms of creation of the surrogate model and in the search performed by the genera-
tive method.

Table 2  Selected parameters 
for GA

Parameter Value

Population size PS 50
Elite fraction EF 0.05
Crossover fraction CF 0.8
Tolerance T 1e-6
Stall generations SG 20 for M5; 8 for M15
Max generations MG 1000
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4.3.1  Analysis of algorithm performance

Figure 5 shows the comparison for scenario M5-BAL-H of the KR and EKR algo-
rithms. EKR obtains the best performance on average. Furthermore, compared 
to SIM, both KR and EKR converge quickly to the optimum which is obtained 
after around 1000 simulations by the SIM algorithm. A similar conclusion can be 
drawn with other scenarios as collected in Table 3, which shows the mean num-
ber of simulations required to reach the optimum for different algorithms. The 
objective value of the optimal solution, i.e., z(�∗) , of each scenario is reported 
in Table  3 and has been validated using the algorithm proposed in Weiss and 
Stolletz (2015).

Moreover, it is noteworthy that the accuracy of the solution obtained using 
the proposed algorithm varies according to the stopping condition used, i.e., the 
EItarget . The double effect on solution accuracy and simulation budget n can be 
analyzed as in Fig. 6. For both algorithms (KR and EKR), the number of simu-
lations used before the algorithm stops decreases as the EItarget increases. With 
EItarget = 0.2 the algorithms stop at first iteration so that the simulation budget n is 
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Fig. 5  Comparison of algorithm performance for scenario M5-BAL-H. The mean of 50 algorithm rep-
lications and its 95% confidence interval (dotted lines) is represented. Lines start when all replications 
reach a feasible solution. When the line of the mean reaches the optimum (i.e., 63 for this case), it means 
that all replications obtain the optimum

Table 3  The simulation 
budget n required to obtain 
the optimum z(�∗) is reported 
according to the algorithm used 
(mean and corresponding 95% 
confidence interval is computed 
over 50 algorithm replications)

Scenario z(�∗) Simulation budget n

SIM KR EKR

M5-BAL-H 63 1060 ± 170 196 ± 31 78 ± 14

M5-BAL-L 39 592 ± 72 159 ± 25 35 ± 8

M5-MID-H 55 1693 ± 326 289 ± 48 46 ± 7

M5-MID-L 35 786 ± 107 214 ± 39 95 ± 22

M5-B2-H 83 675 ± 79 217 ± 34 122 ± 21

M5-B2-L 45 958 ± 116 188 ± 28 39 ± 6
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equal to the initial budget n0 (the initial budgets for KR and EKR are set to be the 
same, i.e., n0 = 16 , in this experiment for comparison purposes). On the contrary, 
the higher the EItarget , the lower the solution quality because the value of the total 
buffer capacity increases. In the figures, the average total buffer capacity with 
EItarget = 0.2 is lower than that with EItarget = 0.15 because of the sampling noise. 
According to the 95% confidence interval, the results of these two EItarget values 
are not statistically different. With the same value for EItarget , the EKR performs 
better than KR.

Similar conclusions can be drawn for long lines, i.e., scenarios M15-BAL-
L and M15-MID-H. Figure  7 represents how the solution improves as simulation 
budget n increases. The best found solution among all algorithm replications is 189 
for M15-BAL-L and 226 for M15-MID-H. Despite not knowing the optimum, we 
assume that the best found is the near-optimum solution of reference.

SIM and KR perform similarly, whereas EKR obtains good solutions after few 
simulations. The surrogate model created by KR is built with few initial pieces of 
data ( n0 = 56 for these scenarios), and given the high dimension of the problem, it 
does not perform well in estimating system performance. Therefore, the quality of 
the promising points, provided by the KR-based generative method, is low and the 
algorithm is slow in improving the objective function. On the contrary, despite the 
initial budget being low, the prediction accuracy of the surrogate model built with 
the EKR is highly improved by the involvement of the DDX method. A good and 

Fig. 6  Final solution obtained 
and number of simulations 
used (mean of 50 algorithm 
replications and 95% confidence 
interval) for M5-BAL-H varying 
EItarget
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feasible solution is found after a few runs of the generative method (the cliff down 
in Fig. 7).

4.3.2  A note on computational time

The proposed algorithm is efficient in obtaining a good solution within few itera-
tions, i.e., with limited simulation budget. Although the execution of the surrogate 
model is fast, at each iteration the generative method executes the surrogate model 
many times; thus, it might lead to a high computational time. Nevertheless, the com-
putational time required by the generative method is not affected by the running 
time of the simulation model, which is involved only in the evaluation phase. As a 
consequence, the proposed approach maintains efficiency in problems in which the 
evaluation method is highly time-consuming as well.
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For the evaluated cases, the simulation of short (long) lines requires on the 
average 0.09  s (0.41  s) with MATLAB 2018b on a laptop Intel(R) Core(TM) 
i7-6600U with 2.6 GHz and 16 GB of RAM. The total simulation time accounts 
of around 10% of the total time required. The rest of the time includes the crea-
tion and update of the surrogate model and the generative method, i.e., the execu-
tion of the DDX method and the surrogate model to provide estimates. This time 
can be further reduced by improving the optimization technique.

It takes on average about 65  s to reach the optimum in scenario M5-BAL-H 
and about 23 min to solve scenario M15-BAL-L (in M15-BAL-L the solution is 
on average 1% larger than the best found 189). These times will be reduced by 
using the proposed algorithm in a problem decomposition approach, as shown in 
Sect. 4.4.

4.4  Benefit of problem decomposition

In the previous section, we show that the proposed generative method can reduce 
the effort of the evaluative method, i.e., the simulation budget. In this section, we 
show that the use of the problem decomposition framework can reduce the search 
effort in the proposed generative method.

In this section, the algorithms are compared in terms of solution obtained and 
the required computational time. Time is used instead of simulation budget for 
two reasons. One is that within the decomposition framework, the simulation 
budget used at a certain hierarchy is not equivalent to that used at a higher one, 
which makes it difficult to compare the simulation effort for different hierarchies. 
The other reason is that the use of the problem decomposition approach has a sig-
nificant effect on algorithm efficiency because of the time spent in the generative 
method, which does not affect the simulation budget. As in Sect. 4.3, the simu-
lated sample path used to evaluate solution � is fixed for each scenario. Results of 
this section have been obtained with MATLAB 2018 on a server with Xeon cores 
and 196 GB of RAM (data refers to a single core).

GA parameters are as in Table  2, except that the population size is selected 
as min(10 ∗ �, 50) for hierarchy � . Algorithm parameters (initial budget n0 and 
EItarget ) have been tuned according to problem dimension (i.e., the hierarchy � ) 
as in Table 4. It is important to mention that the final problem (i.e., the system 
belonging to the higher hierarchy � = S − 1 ) is solved with EItarget = 0 to have a 
more accurate solution, as discussed in Sect. 4.3.1.

Table 4  Selected initial 
budget size and stopping 
criterion for each sub-problem 
M(�, j)|� = 1,… , S − 2 where 
�
best

(�,j)
 is the current best solution 

for the sub-problem M(�, j)

Algorithm Initial budget 
size n0

Sub-problem EItarget

Dec + KR 5 X � 2% × z(�best
(�,j)

)

Dec + EKR 3 X � 8% × z(�best
(�,j)

) for M5 scenarios
0.2% × z(�best

(�,j)
) for M15 scenarios
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4.4.1  The effect of problem decomposition and throughput target

The average total computational time that different algorithm settings require to 
solve the BAP is reported in Table 5. Comparing the use of KR and EKR is aligned 
with Sect. 4.3: the use of DDX reduces the time required to find a BAP solution with 
up to an 85% reduction in the M5-MID-H scenario (51% on the average, only in the 
M5-B2-H scenario, are the results not significantly different).

In the evaluated cases, the problem decomposition approach further reduces 
the computational time and it is more efficient when high total buffer capacity is 
required, i.e., “H” scenarios with a high throughput target. Indeed, the lower bounds 
set by low hierarchies in “H” scenarios are higher than those in “L” scenarios 
because the throughput target constraint is present in all the sub-problems. As a con-
sequence, the remaining search space is small in “H” scenarios and the efficiency is 
highly improved. Compared to EKR, Dec+EKR saves on average 83% of the time 
for high target scenarios and 48% for low target ones. Similar results apply for KR 
versus Dec+KR.

It might happen that algorithms Dec+EKR and Dec+KR do not find the opti-
mal solution. Indeed, the solution found might not be exact when EItarget > 0 
(Sect. 4.3.1). As a consequence, a bound might cut the optimal solution. In Table 5, 
the numbers in brackets represent the relative frequency of the algorithm finding the 
exact solution z(�∗) . As a consequence, solving sub-problem M(�, j) with EI(�,j)target > 0 
could save computational time, whereas the lower the EI(�,j)target , the more accurate the 
bounds provided.

Figure  8 shows a more detailed comparison for scenarios M5-BAL-H and 
M5-BAL-L. Similarly to Fig.  5, the evolution of the objective function is 
reported according to different algorithm settings, and computational time is 
used as the horizontal axis. Lines start when all replications reach a feasible 
solution for the system. Also, for Dec+KR and Dec+EKR, lines start when all 
sub-problems M(�, j) are solved, which happens later compared to KR and EKR 
algorithms. The problem decomposition framework is efficient when high buffer 
capacities are needed, i.e., when the throughput target is high. On the contrary, 

Table 5  The mean computational times [seconds] required to solve the BAP and the corresponding 95% 
confidence intervals according to the algorithm used (50 algorithm replications). The numbers in brack-
ets represent the relative frequency of the algorithm finding the exact solution z(x∗)

Scenario z(�∗) Computational time (relative frequency of exact solution)

KR Dec+KR EKR Dec+EKR

M5-BAL-H 63 100 ± 21 (1) 50 ± 7 (0.94) 65 ± 14 (1) 8 ± 0.3 (1)
M5-BAL-L 39 70 ± 15 (1) 68 ± 13 (0.84) 18 ± 6 (1) 11 ± 1 (1)
M5-MID-H 55 213 ± 43 (1) 59 ± 12 (0.92) 33 ± 7 (1) 11 ± 1 (1)
M5-MID-L 35 111 ± 28 (1) 105 ± 24 (0.94) 60 ± 19 (1) 30 ± 8 (1)
M5-B2-H 83 128 ± 26 (1) 31 ± 4 (0.98) 139 ± 27 (1) 9 ± 0.3 (1)
M5-B2-L 45 91 ± 18 (1) 67 ± 18 (0.5) 23 ± 5 (1) 10 ± 1 (0.98)
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if the throughput target is low, buffers are small and the benefit provided by the 
lower bounds is not significant and is counterbalanced by the additional effort 
required to solve sub-problems.

Similar results can be obtained with long lines: M15-BAL-H and M15-MID-
H. We limit the comparison between algorithm settings Dec+EKR and EKR 
since the surrogate model created with KR is shown to be less efficient (cf. 
Sect. 4.3). As a reference, the best found solution among all algorithm replica-
tions is 291 for M15-BAL-H and 226 for M15-MID-H.

For M15-BAL-H, EKR stops after 18 hours, on average, and results in an 
average distance from the best found solution of 2.4 buffer spaces. Despite 
Dec+EKR starting to solve the last hierarchy after around 2 hours, it stops after 
2.94 hours on average and results in an average distance from the best found to 
be 1.15 buffer spaces. The advantage also appears in M15-MID-H: EKR and 
Dec+EKR stop after 11.7 and 3 hours, respectively, and the average distance 
from the best found is 2.2 and 1.3 buffer slots, respectively.
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4.4.2  Jumping approach

In the problem decomposition framework, the bounds applied reduce the solution 
space simplifying the search in the generative method. Table 6 shows the buffer 
allocation �best

(�,j)
 found by solving BAP of sub-system M(�, j) . Solutions are optima 

and have been validated using the algorithm proposed in Weiss and Stolletz 
(2015). A is used to denote the feasibility region of the final problem, i.e., M(4, 1) 
having hierarchy � = 4 and including the whole system. We compute the fraction 
P of search space A that remains after all sub-systems are solved:

Table 6  Effect of bounds on high- and low-target scenarios. Solution �best
(�,j)

 of each sub-problem M(�, j) 
and fraction p(�,j) of the additional cut space. The fraction P of remaining search space for the final prob-
lem M(4, 1) is also reported

M(�, j) M5-BAL-H M5-MID-H M5-B2-H

z(�best
(�,j)

) p(�,j) z(�best
(�,j)

) p(�,j) z(�best
(�,j)

) p(�,j)

M(1,1) 6 0.19 1 0.03 11 0.35
M(1,2) 6 0.16 9 0.28 11 0.23
M(1,3) 6 0.13 9 0.20 11 0.15
M(1,4) 8 0.14 1 0.02 11 0.10
M(2,1) 22 0.03 22 0.06 28 0.01
M(2,2) 22 0.02 24 0.01 38 0.05
M(2,3) 24 0.03 22 0.04 28 0.00
M(3,1) 42 0.02 40 0.01 61 0.03
M(3,2) 44 0.02 39 0.01 60 0.01

z(�∗) P z(�∗) P z(�∗) P
M(4,1) 63 0.26 55 0.34 83 0.07

M(�, j) M5-BAL-L M5-MID-L M5-B2-L

z(�best
(�,j)

) p(�,j) z(�best
(�,j)

) p(�,j) z(�best
(�,j)

) p(�,j)

M(1,1) 1 0.03 1 0.03 3 0.10
M(1,2) 1 0.03 3 0.09 3 0.09
M(1,3) 1 0.03 3 0.08 3 0.08
M(1,4) 1 0.03 1 0.03 3 0.07
M(2,1) 12 0.05 12 0.03 16 0.05
M(2,2) 12 0.04 14 0.03 18 0.05
M(2,3) 14 0.06 12 0.03 16 0.03
M(3,1) 25 0.02 25 0.01 31 0.01
M(3,2) 26 0.01 24 0.01 31 0.01

z(�∗) P z(�∗) P z(�∗) P
M(4,1) 39 0.70 35 0.66 45 0.51
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where p(�,j) is the fraction of additional cut space provided by the bound from sub-
system M(�, j) . For the evaluated scenarios, the remaining spaces are 26%, 34%, 
and 7% of search space A , respectively, for M5-BAL-H, M5-MID-H, and M5-B2-H. 
For a low throughput target, the reduction is significant but much smaller, i.e., 
the remaining spaces are 70%, 66%, and 51% for M5-BAL-L, M5-MID-L, and 
M5-B2-L, respectively. Results in Table 6 support the results obtained in Sect. 4.4.1: 
the bounds are more effective in “H” scenarios than in “L” scenarios.

From results in Table 6, the additional cut space p(�,j) reduces as the hierarchy 
� of the sub-problem increases. This means that the benefit provided by solving a 
sub-problem reduces while approaching the final problem. Computational time to 
solve M15-BAL-H using the Dec+EKR algorithm and the remaining space given 
the lower bounds are analyzed as in Fig. 9:

• A bowl effect is noticed in the computational time required to solve sub-systems 
in hierarchy �.

• The fraction of the additional cut space over the whole domain (as for the frac-
tion of the additional cut space over the remaining space) decreases as the hierar-
chy increases.

As the hierarchy increases, the effort required to solve all sub-problems is high, 
whereas the benefit provided by the bounds is small. Moreover, the higher the hier-
archy, the closer the created bound to the optimum. Thus, the risk of excluding the 

(14)P = 1 −

S−2∑
�=1

S−�∑
j=1

p(�,j)
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optimal solution from the search space increases as we approach the final problem. 
Hence, we investigate a “jumping strategy” that only partially solves the set of sub-
problems and focuses on those with lower hierarchies.

A first analysis is focused on M5-BAL-H where several “jumping strategies” 
are evaluated. If all hierarchies are jumped, the algorithm solves the final problem 
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directly (i.e., hierarchy � = 4 ) resulting in the EKR algorithm setting. Vice versa, 
if all hierarchies are executed (i.e., hierarchy � = 1, 2, 3, 4 ), the algorithm 
has Dec+EKR setting and results are equal to that of Sect.  4.4.1. We consider 
three “jumping” strategies: to solve hierarchies � = {1, 4} , to solve hierarchies 
� = {1, 2, 4} , and to solve hierarchies � = {1, 3, 4} . As shown in Fig. 10, solving 
the first and last hierarchies ( � = {1, 4} ) is the best approach analyzed.

The benefit provided by lower bounds might be offset by the effort spent on 
solving sub-problems at high hierarchies. This phenomenon is more significant 
in long lines. For scenarios M15-BAL-H and M15-MID-H, respectively, Figs. 11 
and 12 show the solution provided by algorithms with different jumping strate-
gies as the computational time increases. It can be found that, for cases for which 
a high total buffer capacity is required (i.e., high throughput target), a decom-
position approach is efficient compared to solving the final problem directly. 
Nevertheless, a long computational time is needed to solve sub-problems at all 
hierarchies before obtaining a feasible solution. As discussed for 5-machine lines, 
jumping high-hierarchies might save computational times.

The idea of skipping some sub-problems also appears in the segmentation 
approach proposed by Shi and Gershwin (2016). However, the authors do not 
apply a hierarchical solving approach, but focus on solving some sub-problems 
and combining their local solutions. Therefore, the authors decompose the sys-
tem into a few overlapping sub-systems and solve each of them to obtain local 
solutions.

Differently, in the proposed “jumping strategy”, we set out to solve all sub-prob-
lems in a certain hierarchy because we cannot state a-priori which sub-problem is 
more significant in terms of generated cut without additional information.
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Fig. 12  Comparison of algorithm performance for scenario M15-MID-H (mean of 20 algorithm replica-
tions)
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4.4.3  The effect of re‑using data

The use of the EKR method to create the surrogate model combined with a decom-
position approach enables the re-use of data from one hierarchy to the next. This 
feature might be useful when an analytical approach is not available.

M5-BAL-H is used as an example to evaluate how the re-use of data affects the 
results. Figure 13 shows that Dec + EKR (re-use) performs better than Dec + KR, 
although it is not as useful as including the DDX method. The computational effort 
required by the setting Dec + EKR (re-use) to solve the BAP is reported in Table 7 
and can be compared with that for other settings (cf. Table 5). When helpful analyti-
cal methods cannot be applied or are not available, re-using data from lower hierar-
chical systems can also be promising compared to KR that uses only HF simulation 
data.

This result is also supported in Fig. 14 representing the prediction error obtained 
while evaluating the productivity of the final system M(S − 1, 1) . Three algorithm 
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Fig. 13  Comparison of algorithm performance for scenarios M5-BAL-H (mean 50 algorithm replica-
tions)

Table 7  The mean 
computational times [seconds] 
required to solve the BAP 
and the corresponding 95% 
confidence intervals with 
setting Dec+EKR(re-use) (50 
algorithm replications). Relative 
frequency of the exact solution 
z(�∗) is also reported. Results 
can be compared with those of 
Table 5

Scenario z(�∗) Computational time Relative fre-
quency of exact 
solution

M5-BAL-H 63 39 ± 7 (1)
M5-BAL-L 39 57 ± 8 (1)
M5-MID-H 55 50 ± 9 (0.98)
M5-MID-L 35 72 ± 9 (1)
M5-B2-H 83 44 ± 10 (1)
M5-B2-L 45 56 ± 10 (0.94)
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settings are compared using nc = 104 checkpoints: Dec+KR, Dec+EKR(DDX), and 
Dec+EKR(re-use). When the proposed algorithm reaches the highest hierarchy and 
creates the surrogate model of the final system, the MAPE is computed. For com-
parison purposes, the initial design at hierarchy � = S − 1 contains the same number 
of design points for different algorithm settings: ||�0|| = 16 for scenario M5-BAL-
H and ||�0|| = 56 for scenario M15-BAL-L. These design points are sampled in the 
search space resulting after the cuts provided in the decomposed approach.

The surrogate model created using the EKR(DDX) has the smallest prediction 
error, and re-using data also improves the quality of the built surrogate model com-
pared to that created using the KR method.

5  Conclusions

The proposed method is efficient when the evaluative method is time-consuming 
(e.g., highly detailed simulation model). Also, the algorithm has a significant advan-
tage in BAP where the optimal total buffer capacity is high. These advantages are 
due to two properties of our approach: 

1. The simulation budget is saved through an efficient allocation of the budget in 
near-optimum areas thanks to the use of the surrogate model;

2. The generative method increases efficiency as more search space is cut by the 
decomposition approach.

Because of the randomness of the initial design, and the GA used in the genera-
tive method, the overall algorithm has a heuristic nature. Nevertheless, the variabil-
ity of the results is very limited.

Further, the combination of simulation and analytical methods improves the accu-
racy of the surrogate model even with few observations and improves the efficiency 
of the algorithm significantly. Where no analytical method is available, re-using data 
in the decomposition framework could be also helpful.
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Fig. 14  MAPE of the surrogate models created by KR, EKR using DDX as LF and EKR using lower 
hierarchy models as LF. Boxplots are created with 50 algorithm replications for scenario M5-BAL-H and 
10 replications for scenario M15-BAL-L



250 Z. Lin et al.

1 3

In the decomposition framework, running all the hierarchies might be not effi-
cient. A trade-off exists between additional computational effort required to solve 
sub-problems and the size of solution space cut by the provided bounds. In this case, 
jumping some hierarchies might be helpful.

The proposed method is highly flexible in terms of applications besides the BAP. 
It can be applied potentially to other problems in which the decision variables are 
continuous or discrete values with a larger candidate set (so that the surrogate model 
can be built) and lower/upper bounds can be provided from lower hierarchies (so 
that the decomposition framework is helpful), e.g., resource and server allocation 
problems, line balancing problems, redundancy problems, design and control prob-
lems of production lines. Hence, future developments will be focused on general-
izing the approach.

Future work will be devoted to investigating the use of surrogate models in an 
exact approach. Moreover, “jumping” strategies will be further investigated in order 
to understand which hierarchies should be jumped to improve efficiency. Also, sub-
systems containing the bottleneck can be prioritized compared to others since they 
provide more efficient bounds.

The EKR method provides an efficient way to create a surrogate model of system 
performance from multi-fidelity sources. The expensive high-fidelity data (e.g., out-
puts of highly detailed simulation models or data from the field) are combined with 
low-fidelity estimates (e.g., outputs of coarse simulation models or analytical meth-
ods), which are fast and easy to calculate, to improve the prediction performance of 
the built surrogate model. The EKR method can assign different weights to different 
low-fidelity models in different areas of the domain automatically, according to the 
observed data.

Appendix

This section describes briefly how to build the surrogate model using the EKR 
method. A MATLAB EKR toolbox (both the EKR code and a manual) can be found 
at Lin et  al. (2020) (https ://doi.org/10.13140 /RG.2.2.16632 .19206 ). More details 
about the method can be found in Lin et al. (2019).

Given a system configuration x under which the high-fidelity system performance 
yh(x) is unknown, its low-fidelity outputs ylj (x),∀j are firstly corrected by scaling 
functions. Two scaling functions are considered: 

1. Additive scaling function: ỹlj
i
(x) = ylj (x) + (yh(x

0
i
) − ylj (x

0
i
)),∀i ∈ N,∀j ∈ J;

2. Multiplicative scaling function: ỹlj
i
(x) =

yh(x
0
i
)

ylj
(x0

i
)
⋅ ylj (x),∀i ∈ N,∀j ∈ J.

where yh(x0i ) and ylj (x
0
i
) are the outputs of the high-fidelity model and the jth low-

fidelity model at the ith design point x0
i
 , respectively. Different scaling functions can 

be used for different low-fidelity models.

https://doi.org/10.13140/RG.2.2.16632.19206
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These corrected outputs are expected to have more reliable prediction perfor-
mance if their scaling functions are estimated by the initial design points close to 
the unobserved point. Therefore, for the jth low-fidelity model, Kernel regression 
(Wand and Jones 1995) is used to locally fit a polynomial on the corrected data ỹlj

i
(x) 

with distance-based weights. The system performance estimate at the unobserved 
point x , using the jth low-fidelity model’s corrected data, has a closed form:

where e1 is a (dp + 1)-dimensional vector whose first element is 1 and the rest are 0,

is an n × (dp + 1) matrix, p is the degree of the fitted polynomial and 
Ỹlj

= [ỹ
lj

1
(x),… , ỹ

lj
n(x)]

T . W
x
= diag{K1,�1

(x0
1
− x),… ,K1,�1

(x0
n
− x)} is an n × n 

diagonal matrix where

�1 = diag{�1,1,… , �1,d} , and 𝜃1,k > 0, k = 1,⋯ , d are parameters to be selected.
Finally, the estimates from different low-fidelity models are combined with the 

weights related to the estimated weighted square error:

where

and tr(W
x
) is the trace of W

x
 . K2,�2

(⋅) has the following form:

where

(15)ŷlj (x) = e
T
1
(X

x

T
W

x
X
x
)−1X

x

T
W

x
Ỹlj

,∀j ∈ J,

X
x
=

⎡
⎢⎢⎢⎢⎣

1 (x0
1
− x)T ⋯

�
(x0

1
− x)p

�T
1 (x0

2
− x)T ⋯

�
(x0

2
− x)p

�T
⋮ ⋮ ⋱ ⋮

1 (x0
n
− x)T ⋯

�
(x0

n
− x)p

�T

⎤
⎥⎥⎥⎥⎦

K1,�1
(x0

i
− x) =

d∏
k=1

exp

{
−

1

2�1,k
(x0

ik
− xk)

2

}
,∀i ∈ N,

ŷEKR(x) =
∑
j∈J

wlj
(x)ŷlj (x),

wlj
(x) =

K2,𝜃2
( ̂WSElj

(x))

∑
i∈J K2,𝜃2

( ̂WSEli
(x))

,

̂WSElj
(x) =(tr(W

x
))−1Ỹ

T

lj
(W

x
−W

x

T
X
x
(X

x

T
W

x
X
x
)−1X

x

T
W

x
)Ỹlj

,∀j ∈ J,

K2,𝜃2
( ̂WSElj

(x)) = exp

{
−

̂WSElj
(x)

2𝜃2WSEmin(x)

}
,∀j ∈ J,

WSEmin(x) = min
j∈J

{ ̂WSElj
(x)},
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and �2 is an unknown parameter to be selected.
The model parameters �1,k, �2 are selected according to the cross-validation. 

Where p = 1 , the estimated root square error of ŷEKR(x) as an estimate of the high-
fidelity response is provided as:

where

and:
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