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A B S T R A C T   

In multistage machining processes (MMPs), variations from key control characteristics (KCCs) continue to 
propagate and eventually accumulate to deviations in key product characteristics (KPCs). Therefore, the varia-
tion control of KCCs is significant to ensure the final product quality. In this paper, a variation management 
framework for KCCs in MMPs is established to address this issue. The new concept of variation management 
consists of process-oriented tolerancing and maintenance planning, and the optimal variation management 
strategy for each KCC is assigned based on its impact to the manufacturing system. The proposed framework 
deduces corresponding KCC variation distributions for previously unresearched locating schemes, thereby 
expanding the application scenarios of this method. For the quality specification constraints, geometric toler-
ances are integrated for the first time beside traditional dimensional tolerances, which expand the error scale of 
quality control. The modified Chebyshev goal programming (MCGP) approach is adopted to find the equilibrium 
point between quality and cost effectively. The superiority of the proposed method is verified by a case study of 
an automotive engine cylinder block MMP. The results show a remarkable improvement on the manufacturing 
system performance in terms of quality and cost.   

1. Introduction 

Multistage machining processes (MMPs) are widely used in 
manufacturing to obtain high-quality products by removing materials 
from the casting blank. Key product characteristics (KPCs) are critical 
features that describe a workpiece design so that it can satisfy particular 
functions. Therefore, meeting the quality specifications of KPCs in MMPs 
is a significant issue [1]. 

Tooling elements in MMPs are used to locate, clamp, or cut the un-
finished workpieces. For a specific stage, machining features deviate 
from designed target values due to the imperfection of fixture locators or 
other tooling elements. If some of these deviating features are used as 
the datum features at downstream stages, their deviations will propa-
gate and accumulate, ultimately affecting the machining precision of 
KPCs. Key control characteristics (KCCs), which contain process-related 
knowledge, are those tooling elements whose variations are the root 
cause of the KPCs’ deviations [2]. Therefore, to maintain a high preci-
sion level of KPCs, variation management on KCCs should be necessary 
and helpful. 

Describing the variation introduction and variation propagation 
from KCCs to KPCs is the basis of variation management. The stream of 
variation (SoV) theory is one of the most effective methods revealing the 
mapping relation between KCCs and KPCs [1]. Zhou et al. [3] explored 
the vector deviation representation and proposed a differential motion 
vector (DMV) based state space model to describe the SoV. This work 
derived detailed mathematical expressions of fixture variations and 
datum variations, providing a groundbreaking approach for modelling 
MMP variation propagation. Subsequently, this model was further 
expanded in fixture layouts [4–6], machining-induced variations [7,8], 
application objects [9–11] and geometric dimensioning and tolerancing 
(GD&T) integration [12]. By this time, the variation propagation rule 
from KCCs to KPCs in MMPs has been clear. 

However, the KCC is inherently imperfect both statically and 
dynamically, which is a significant challenge for its variation manage-
ment [13]. Static imperfection refers to the manufacturing deviation of 
KCC itself, while dynamic imperfection is the degradation of KCC due to 
wear or other factors in MMPs. Tolerancing and maintenance are two 
major tools to address static and dynamic imperfection. For MMPs, 
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tolerancing determines the initial tolerance conditions for tooling ele-
ments, i.e. allocating allowable varying ranges. However, the allocated 
tolerances can only guarantee product quality in the early production if 
KCC degradation is not considered. Maintenance periodically renews the 
deteriorated KCCs to initial conditions to prevent out-of-tolerance 
workpieces due to dynamic imperfection. Therefore, the new concept 
of variation management comes into being, that is, the integration of 
tolerancing and maintenance. 

Tolerancing, widely adopted in multistage assembly processes 
(MAPs), allocates final quality specifications to tolerances of each 
component, so as to minimize manufacturing cost on the basis of product 
functionality warranty [14–16]. The traditional product-oriented tol-
erancing focuses on assigning tolerance to product variables, i.e. 
assigning the assemblage’s quality specifications to KPCs of each 
accessory. Most related researches build cost-tolerance functions with 
minimum cost as the objective, and solve them by optimization methods 
[17–19]. Although product-oriented tolerancing plays an important role 
in product optimization design, little attention is paid to process 
knowledge. Since variations in KCCs are the root cause of negative im-
pacts on product quality, optimally assigning tolerances of KCCs 
throughout the manufacturing process has become a hotspot. Ding et al. 
[2] firstly established the process-oriented tolerancing approach for 
automotive body MAPs. However, this method fixed the replacement 
cycle of fixture elements for half a year, and did not fully utilize the 
dynamic degradation of KCCs. Chen et al. [13] expanded Ding’s 
research, integrated process-oriented tolerancing with maintenance. 
The tolerances and maintenance strategies of assembly fixtures were 
comprehensively optimized, achieving the quality improvement and the 
cost reduction. 

These two works laid the foundation for KCC variation management. 
However, they were concentrated on MAPs, where only assembly fix-
ture’s variation is of interest for KCC variation management purpose. In 
MMPs, there are more types of KCCs with different cost functions and 
different degradation models, such as cutting tool, various fixture ele-
ments in different fixture scheme, etc. Therefore, the KCC variation 
management in MMPs is relatively complicated and less explored. 
Huang and Shi [20] firstly developed a tolerance stackup model for 
MMPs, assigning tolerances to fixture locators by maximizing the vari-
ances of KCCs under the constrains of part quality specifications. Since 
the research on SoV was not mature enough at the time, this work 
adopted a two-dimensional variation propagation model. For all KCCs, 
only three point-to-surface fixture locators were considered, which were 
all assumed to be independent with each other and followed normal 
distributions. Based on the three-dimensional SoV model, Liu et al. [21] 
selected the optimal setup planning of MMPs by process-oriented tol-
erancing approach. Chen et al. [22] and Zhang et al. [23] optimized the 
KCC design through tolerance synthesis to improve quality and reduce 
cost. Since the dynamic degradation of KCC was not considered in above 
models, maintenance planning could not be integrated, all optimizations 
were achieved by changing the layout or process of manufacturing 
system. For the MMP from a mature manufacturing system, like auto-
motive engine cylinder block machining, an optimal KCC variation 
management scheme, i.e. process-oriented tolerancing plus mainte-
nance planning, is a better choice for most manufacturing companies 
[24–26]. Abellán-Nebot et al. [27] proposed a new process-oriented 
tolerancing approach. Two more KCCs, cutting tool and spindle tem-
perature, were considered as new additions. The degradation models for 
locator and cutting tool were defined for maintenance integration. This 
method has achieved good performance in MMPs that only have 
point-to-surface locating scheme. 

Although the simultaneous optimization for tolerancing and main-
tenance planning for KCCs in MMPs has achieved some successes, three 
main limitations can be identified in previous research works: (i) 
Applicable scenarios are limited. For the only applicable conventional 3- 
2-1 locating scheme, only the locators in the form of point-to-surface can 
be studied. Other fixture layouts, such as pin-hole locating scheme, 

although very common in MMPs, need to introduce new types of KCCs. 
(ii) Quality constraints only concern about dimensional tolerance, geo-
metric tolerance is another important component of quality specifica-
tion needs to be constrained. (iii) Finding the equilibrium between 
quality and cost is difficult in single-objective optimization with the 
quality as the constraint and the lowest cost as the goal. For the modified 
approach that defines the objective function as the sum of quality loss 
and variation management cost, the two components are incomparable, 
so there is no scientific method to determine the corresponding weights. 

In this paper, a new variation management method is proposed for 
KCCs in MMPs with the consideration of quality-cost equilibrium. In 
response to the above limitations, the major contribution of this paper 
resides in three aspects: (i) The KCC variation management in MMPs is 
applicable to pin-hole locating scheme for the first time. Fixture pins are 
added as a new type of KCC in MMPs, whose tolerance-variation rela-
tion, degradation model and cost function are fully studied. (ii) For 
quality specifications of the workpiece, the geometric tolerance 
constrain is integrated beside traditional dimensional tolerance, which 
expands the scale of quality control. (iii) A bi-objective optimization 
model is proposed to find the equilibrium point between quality and 
cost, and a modified Chebyshev goal programming (MCGP) approach is 
adopted to solve it. 

The outline of the paper is given as follows. In Section 2, the general 
framework and detailed procedures of the new method are presented. 
Section 3 validates the proposed method through an industrial case 
study of automotive engine cylinder block machining. Finally, the 
methodology is summarized in Section 4. 

2. The proposed method 

2.1. Overview and framework 

Fig. 1 is the logic framework of the proposed method that demon-
strates the interrelations between quality and cost in MMPs. The general 
architecture can be divided into three layers: the operation layer, the 
decision layer and the objective layer. 

The operation layer describes the dynamic variation propagation 
from KCCs to KPCs. As introduced in Section 1, the variations in tooling 
elements are described by the process variables of KCCs. Through the 
variation propagation mechanism of MMPs, the variations of KCCs are 
transferred to KPCs, causing the final deviations and worsening the 
product quality. Suppose that the MMP has n tooling elements 
(including p locators/pins and q cutting tools) distributed in N stages, 
and there are m KPCs in the workpiece. The n KCC variations are 
described by U = [U1U2⋯Ur⋯Un]

T and the deviations of m KPCs are 
denoted as Y = [Y1Y2⋯Yh⋯Ym]

T. Based on the SoV theory, the KPC 
deviations Y can be represented as a function of U. Section 2.2 will 
establish the relation and propose the variation propagation model in 
detail. 

The decision layer is the output of the KCC variation management 
strategy. As mentioned in Section 1, the static and dynamic imperfec-
tions of KCCs are featured by tolerance and degradation respectively. 
T =

[
T1T2⋯Ti⋯Tp

]T denotes the allocated tolerance of locators/pins in 
KCCs, which determines the initial allowable varying ranges of U. 
During the MMPs, U shifts dynamically with the continuous degradation 
of KCCs, which will worsen product quality until the failure that the KPC 
deviations exceed the quality specifications at a certain time. Mainte-
nance can periodically restore the deteriorated KCCs to original states 
and avoid the failure. Since the preventive maintenance policy is 

adopted in this paper, af =
[
af

1af
2⋯af

i ⋯af
p

]T 
is defined as the mainte-

nance cycle of locators/pins and ac =
[
ac

1ac
2⋯ac

j ⋯ac
q

]T 
is defined as the 

replacement cycle of cutting tools. T and a are both key decision pa-
rameters that determine the state of KCCs in MMP, and their detailed 
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impact on the variations of KCCs will be demonstrated in Section 2.3. 
The objective layer proposes the optimization goals for this paper, 

including minimizing variation management cost and minimizing 
quality loss. Generally, the tighter the tolerance or the higher the fre-
quency of maintenance, the higher the cost of variation management, 
and the lower the quality loss. These two objectives conflict with each 
other. Therefore, a bi-objective optimization method is proposed to find 
the equilibrium point between quality and cost. The definition of 
objective functions, constraints, and optimization model will be illus-
trated in Section 2.4. 

2.2. State space model of KCC variation propagation 

2.2.1. Vector variation representation 
The deviation of a feature can be represented by DMV of its own 

coordinate system (CS) w.r.t. another CS [3]. For the ith feature of the 

workpiece, the DMV is defined by xR
i =

[

(dR
i )

T
(θR

i )
T
]T 

w.r.t. reference 

CS, where dR
i =

[
ΔxR

i ΔyR
i ΔzR

i
]T contains three small translation 

deviations and θR
i =

[
ΔαR

i ΔβR
i ΔγR

i
]T contains three small rotation 

deviations. 
For a MMP with N stages, assuming that there are W quality features 

involved in the variation propagation and the deviation of the ith feature 
w.r.t. reference CS at stage k is a DMV xR

k,i (i = 1, 2, …, W), the state 

vector X(k) =
[(

xR
k,1

)T (
xR

k,2

)T
...

(
xR

k,W

)T
]T 

is a stack of DMVs 

that represents the deviations of all quality features after stage k. 

2.2.2. Variation contributors and propagation model 
A clear understanding of variation propagation mechanism is the 

basis of KCC variation management. Three main variation contributors 
among MMPs are identified in this paper: fixture variations, cutting tool 
variations and datum variations. These variation contributors and their 
propagation can be abstracted as shown in Fig. 2 by state space 
representation. 

Fig. 3 shows the two most representative locating schemes in MMPs, 
namely conventional 3-2-1 locating scheme and pin-hole locating 
scheme. Therefore, the fixture includes two types of KCC: locators and 
pins, which introduce variations into MMPs in different ways because of 
the difference in contact form, tolerance-variation relation and degra-
dation model. 

For the cutting tool, it gradually wears out during the process. Unlike 
the fixture, it is assumed that the cutting tool is perfect in its initial state, 
that is, the cutting tool variations only come from degradation. There-
fore, maintenance planning is necessary for cutting tool but tolerancing 
is not needed. 

Datum variations exist when the features produced by upstream 
stages are used as datum features. Although datum features do not 
introduce KCC directly, they play a vital role in the propagation of KCC 
variations. 

The state space model is developed to describe the variation propa-
gation in MMPs as a state equation and a measurement equation: 

X(k) = A(k − 1)⋅X(k − 1) + B(k)⋅U(k) + w(k) (1)  

Y(k) = C(k)⋅X(k) + v(k) (2)  

where U(k) is the random variable of introduced KCC variations at stage 
k, including fixture variations and cutting tool variations; Y(k) is the 

Fig. 1. The logic framework of the proposed method.  

Fig. 2. Variation propagation by state space representation.  
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KPC deviation vector of stage k; w(k) and v(k) are the un-modelled 
system errors and the measurement noise respectively. The coefficient 
matrices A, B are determined by process knowledge, such as the datum 
transformation between stages and the KCC layouts on individual stages, 
and C is determined by the position of KPCs and measurement datum 
features. The detailed expressions can be derived in [3]. 

Therefore, in the state equation, A(k − 1)⋅X(k − 1) represents the 
datum variations introduced from previous stages, and B(k)⋅U(k) rep-
resents the deviations introduced at current stage due to fixture and 
cutting tool. In the measurement equation, C(k)⋅X(k) represents the KPC 
deviations w.r.t. measurement datum. 

Generally, product quality is evaluated by the KPC deviations at the 
final stage, that is, k = N in the state space model. Substituting Eq. (1) 
into (2), 

Y(N) =
∑N

k=1
C(N)Φ(N, k)B(k)U(k) + C(N)Φ(N, 0)X(0) + ε (3)  

where the state transition matrix Φ(N, k) = A(N − 1)A(N − 2)⋯A(k)
and Φ(k,k) = I. 

Setting the initial conditions to zero, i.e. X(0) = 0 and the uncer-
tainty term ε is negligible because the un-modelled noise accounts for 
very little extra variations in MMP [28]. Calculating the covariance for 

both sides of Eq. (3) after the simplification, the variation propagation 
can be approximated as: 

ΣY =
∑N

k=1
γ(k)ΣU(k)γT(k) = ΓΣUΓT (4)  

where ΣY and ΣU(k) represent the covariance matrices of Y(N) and U(k), 
γ(k) = C(N)Φ(N, k)B(k), Γ = [γ(1)⋯γ(N)], and ΣU = diag(ΣU(1), ⋯,

ΣU(N)). 

2.3. Distribution of KCC variations considering process degradation 

2.3.1. KCC variations in fixture 
Locators and pins are two types of KCC in fixture and have differ-

ences in contact form, tolerance-variation relation and degradation 
model. The distribution of KCC variations in two locating schemes will 
be deduced in this section. The pin in pin-hole locating scheme is a new 
variation management object in MMPs.  

(a) Conventional 3-2-1 locating scheme 

The locating pair of conventional 3-2-1 locating scheme is in the 
form of point-to-surface contact in single direction as shown in Table 1. 

Fig. 3. The two most representative locating schemes in MMPs.  

Table 1 
Different types of locating pair and its variation.  

Locating pair point-to-surface 
locating pair 

four-way pin-hole 
locating pair 

two-way pin-hole 
locating pair 

Diagram 

Deviation 

* O0 is the ideal position and O1 is the actual position. 
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Ti is the tolerance of ith locator, which limits the initial variation range of 
this KCC. Tighter tolerance means higher manufacturing requirement 
and cost, so tolerancing tends to allocate tighter tolerances to locators 
that have a greater impact on KPCs. The variation motion of locator is 
only in one direction. Here, z direction is taken as the example. The 
deviation δi is between the actual and ideal position of the locator, which 
is initially bounded by [ − Ti/2,Ti/2] and follows a normal distribution 

of N
(

0, (Ti/6)2
)

. Since E[⋅] is the expectation operator, the statistics 

regarding ΔZ before operation are 

E[ΔZ] = E[δ] = 0 (5)  

σ2
Z = E[ΔZ2] = E[δ2] = E2[δ] + D[δ] =

T2

36
(6) 

The locator wear causes the process degradation. Refer to mainte-
nance handbooks [29], material wear rate of locator is generally con-
stant during the process. Taking into account the effect of the coating on 
locator surface, the material wear rate in initial stage is quite low until 
the coating is deteriorated. Therefore, the locator degradation can be 
modelled by a quadratic curve w.r.t. operation time for simplicity [27]. 
The deviation of the locating pair considering degradation can be 
updated by 

di(τ) = δi + Δi(τ) (7)  

where δi is the initial variation determined by the tolerance, Δi(τ) is the 
aggregated wear at age τ which is defined by Δi(τ) = Gk⋅τ2 for locator, Gk 
is a constant indicates the wear rate of locators at stage k. Eq. (7) means 
that the locating variation changes with the wear of locator. 

Therefore, substituting Eq. (7) into (6) can obtain the variance of the 
locator variation Ui considering process degradation. It can be expressed 
as 

Var(Ui) = σ2
Z(τ) = E[(δ + Δ(τ))2

] = E[δ2 + 2δΔ(τ) + Δ2(τ)]

= E[δ2] + 2E[δ]μΔτ + (μΔτ)
2
+ D[Δ(τ)] = T2

36
+ (μΔτ)

2
+ τ⋅σ2

Δ

(8) 

This formula will be iteratively applied to every point-to-surface 
locating pair in each stage of MMPs, so that fixture part of ΣU in Eq. 
(4) can be expressed in terms of tolerance and operation time of corre-
sponding locator.  

(b) Pin-hole locating scheme 

Besides the point-to-surface locating pair introduced in last part, two 
types of locating pairs should be considered in pin-hole locating scheme 
as shown in Table 1: the four-way pin-hole locating pair and the two- 
way pin-hole locating pair. The contact between pin and datum hole is 
the form of cylinder-to-cylinder. dpin is the diameter or major axis of the 
pin and dhole is the diameter of the datum hole. Ti is the tolerance of ith 

pin, i.e. the upper limit of the clearance δi. The clearance is the deviation 
of hole centre from pin centre, which is initially bounded by [0,Ti] and 

follows a normal distribution of N
(

Ti/2, (Ti/6)2
)

. 

For the four-way pin-hole locating pair, denoting θ as the contact 
orientation, the deviation in x and y directions are 

ΔX = δcosθ,ΔY = δsinθ (9) 

The clearance for a four-way locating pair is homogenous in all di-
rections, so the orientation angle θ follows a uniform distribution of U(0,
2π). Therefore, the variation statistics associated with a four-way 
locating pair can be derived as 

E[ΔX] = E[δcosθ] = E[δ]⋅E[cosθ] = 0 (10)  

E[ΔY] = E[δsinθ] = E[δ]⋅E[sinθ] = 0 (11)  

σ2
X,4− way = E[ΔX2] = E[δ2]⋅E[cos2θ] = (E2[δ] + D[δ])⋅

1
2
=

5T2

36
(12)  

σ2
Y,4− way = E[ΔY2] = E[δ2]⋅E[sin2θ] = (E2[δ] + D[δ])⋅

1
2
=

5T2

36
(13)  

Cov(ΔX,ΔY) = E[ΔXΔY] = E[δ2sinθcosθ] = E[δ2]⋅E[sinθ]⋅E[cosθ] = 0
(14) 

For the two-way pin-hole locating pair, the variation is in single di-
rection determined by α, and the deviation in x and y directions are 

ΔX = κ⋅δsinα,ΔY = κ⋅δcosα (15)  

where κ is a sign variable, which determines the sign of variation ac-
cording to which side of the datum hole touches the pin. α is a fixed 
value according to the orientation of the two-way pin. Therefore, the 
statistics regarding ΔX and ΔY can be given as 

E[ΔX] = E[κ⋅δsinα] = E[κ]⋅E[δ]⋅E[sinα] = 0 (16)  

E[ΔY] = E[κ⋅δcosα] = E[κ]⋅E[δ]⋅E[cosα] = 0 (17)  

σ2
X,2− way = E[κ2⋅δ2sin2α] = E[δ2]⋅E[sin2α] = 5T2

18
sin2α (18)  

σ2
Y,2− way = E[κ2⋅δ2cos2α] = E[δ2]⋅E[cos2α] = 5T2

18
cos2α (19)  

Cov(ΔX,ΔY) = E[κ2⋅δ2sinαcosα] = E[δ2]⋅E[sinα]⋅E[cosα] = 5T2

18
sinαcosα

(20) 

Since Eq. (7) gives the expression of locating variation under process 
degradation, a reasonable degradation model for pin-hole locating pair 
is the focus to obtain Δi(τ) of Eq. (7). Archard [30] firstly established a 
sliding wear model to reflect the physical mechanism of tool wear. Based 
on this research, Jin and Chen [31] proposed a stochastic degradation 
model. The aggregated wear after age τ is defined as 

Δi(τ) = Δi(τ − 1) + Δr
i (τ) (21)  

where Δr
i (τ) is the incremental wear at time τ, and it follows a lognormal 

distribution of Lognorm(μΔ, σ2
Δ). The mean wear rate μΔ for time τ is 

modelled as 

μΔ(τ) = μ0 + μ1e− βτ (22)  

which consists of two components: μ0 is the constant wear rate, μ1e− βτ 

leads to the exponential decrease from initial wear rate μ0 + μ1 to μ0. 
Therefore, the deviation of two types of locating pair are updated. 

Substituting Eq. (7) into (12), (13), (18) and (19), the variance in two 
directions can be expressed as 

σ2
X,4− way(τ) = E[(δ + Δ(τ))2⋅cos2θ] =

1
2

E[(δ + Δ(τ))2
] (23)  

σ2
Y,4− way(τ) = E[(δ + Δ(τ))2⋅sin2θ] =

1
2

E[(δ + Δ(τ))2
] (24)  

σ2
X,2− way(τ) = E[κ2⋅(δ + Δ(τ))2⋅sin2α] = sin2α⋅E[(δ + Δ(τ))2

] (25)  

σ2
Y,2− way(τ) = E[κ2⋅(δ + Δ(τ))2⋅cos2α] = cos2α⋅E[(δ + Δ(τ))2

] (26) 

Since Ui includes deviations in both direction, the variance of the pin 
variation considering process degradation can be expressed as 

Var(Ui,4− way) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ2
X,4− way(τ))

2
+ (σ2

Y,4− way(τ))
2

√

=

̅̅̅
2

√

2
E[(δ + Δ(τ))2

] (27)  
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Var(Ui,2− way) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ2
X,2− way(τ))

2
+ (σ2

Y,2− way(τ))
2

√

= E[(δ + Δ(τ))2
] (28)  

where E[(δ + Δ(τ))2
] = E[δ2 + 2δΔ(τ)+ Δ2(τ)] = 5T2

18 + T⋅μΔτ + (μΔτ)
2
+

τ⋅σ2
Δ. 
These two formulas will be iteratively applied to every pin-hole 

locating pair in each stage of MMPs in pin-hole locating scheme. 
Together with the variance calculated by Eq. (8) for three locators, the 
fixture part of ΣU in Eq. (4) can be expressed in terms of tolerance and 
operation time of corresponding fixture element. 

2.3.2. KCC variations of cutting tool 
Cutting tool is another important KCC in MMPs. It is generally 

assumed that the cutting tool is purchased directly without initial 
variation. During the process, the cutting tool gradually wears and in-
troduces variation. Therefore, the focus of cutting tool variation man-
agement is maintenance planning, i.e. cutting tool replacement strategy. 

For common machining operations, cutting tool wear is modelled as 
a third-order polynomial function of operation time in existing re-
searches, while in high-speed machining operations, it tends to follow a 
second-order polynomial function [32]. Without loss of generality, the 
cutting tool wear variable in MMPs is assumed to follow a quadratic 
curve in the form of 

wj(τ) = Ek⋅τ + Fk⋅τ2 (29)  

where wj(τ) is the jth cutting tool wear after age τ, Ek and Fk are wear rate 
coefficients at stage k. Therefore, the cutting tool variation, defined as 
wj(τ), is a random variable with the probability density function derived 
as follows. 

For the jth cutting tool, ac
j is defined as the decision variable of 

replacement cycle, thus, τ ∈ [0, ac
j ] and wmax

j is the admissible maximum 
wear of cutting tool when τ = ac

j . Discretizing the operation time, the 
variable τ can be considered as a uniform distribution of U(0, ac

j ). 
Therefore, the probability density function of the jth cutting tool wear 
can be obtained by Eq. (30). For a function of y = r(x), if r is differen-
tiable and the probability density function of x has already known as 
fX(x), the probability density function of y can be calculated as 

gY(y) = fX(r− 1(y))⋅
⃒
⃒
⃒
⃒
dr− 1(y)

dy

⃒
⃒
⃒
⃒ (30) 

Therefore, the probability density function of cutting tool variation is 

g(wj) =
1
ac

j
⋅

⃒
⃒
⃒
⃒
⃒
⃒
⃒

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Ek)
2
+ 4⋅Fk⋅wj

√

⃒
⃒
⃒
⃒
⃒
⃒
⃒

(31) 

After enough numerical simulation, the variance of cutting tool 
variation can be obtained in terms of operation time, which will be 
iteratively applied to every stage of MMPs so that cutting tool part of ΣU 

in Eq. (4) can be expressed. 

2.4. Optimization model construction 

The conventional variation management models are single-objective 
optimization [20], or the objective function is the sum of quality loss and 
variation management cost [27]. A bi-objective optimization model 
solved by the MCGP approach can find the equilibrium point between 
quality and cost, and it averts the difficulty of specifying the weights of 
two components [33]. Besides, in addition to dimensional tolerance 
constraints, geometric tolerance needs to be added for the constraints of 
the optimization model. The definition of objective functions and con-
straints, and the solution of the optimization model are introduced in 
this section. 

2.4.1. Objective functions definition 
For this bi-objective optimization model, the objective functions 

include minimizing the variation management cost and minimizing the 
quality loss.  

(a) The objective function of variation management cost 

Considering two types of KCC in MMPs, the variation management 
cost includes: 

1) Fixture cost: The tolerance-cost function for each locator/pin is 
reciprocal in this paper, i.e. Ci

T = wi/Ti, i = 1, ..., p, where Ti is the 
allocated tolerance of ith locator/pin and wi is the associated weight 
coefficient. In addition to the tolerance cost, the scheduled maintenance 
will introduce another fixed cost cf

0i (due to labour and management) for 
fixture elements. Therefore, the fixture cost includes tolerance cost and 
fixed cost. The cost induced at time t can be defined as 

Cf
M(t) =

∑

i∈St

(Ci
T + cf

0i) =
∑

i∈St

(
wi

Ti
+ cf

0i), i = 1, ..., p (32)  

where St is the index set of locator/pin subjected to a scheduled main-
tenance at time t, which is determined by maintenance strategy af . i ∈ St 
means that the ith locator/pin needs to perform the maintenance at time t 
according to the schedule. Hence, Cf

M(t) depends on both decision pa-
rameters and can be described as Cf

M(t;T,af ). Tighter tolerance or higher 
frequency of maintenance will lead to higher cost. 

2) Cutting tool cost: Similar to the fixture cost, cutting tool cost 
induced at time t can be defined as 

Cc
M(t) =

∑

j∈St

(cc
j + cc

0j), j = 1, ..., q (33)  

where cc
j is the cost of cutting tool itself, cc

0j is the fixed cost of jth cutting 
tool replacement, j ∈ St means that the jth cutting tool needs to replace at 
time t according to the schedule. Hence, Cc

M(t) depends on the decision 
parameter of ac and can be described as Cc

M(t; ac). A high replacement 
frequency increases the cost.  

(b) The objective function of quality loss 

The variation propagation model proposed in Section 2.2 can effec-
tively predict the variations of KPCs, denoted as Y. The principle of 
Taguchi quality loss is “the smaller the better” and the quality loss 
function is quadratic. Pignatiello [34] extended quality loss function for 
multi-dimensional variables. In this paper, Eq. (34) is used for multi-
variate quality loss function: 

L(Y) = YT SY (34)  

where S = qI is a symmetric positive-definite matrix defining the 
contribution of each KPC to product quality loss. 

Since Y depends on the variations of KCCs which is determined by 
time t and decision parameters T and a, the quality loss function L(Y) is 
determined by all three variables, which can be described as 
L(Y(t);T, a). 

2.4.2. Constraints definition 
The constraints of the optimization model are mainly divided into 

two categories: product quality constraints and decision parameter limit 
constraints. The former is the focus and will be introduced in detail in 
this section, while the decision parameter limit constraints will be given 
directly in the optimization model of next section. 

Product tolerances define the design specifications of workpiece. To 
ensure the product quality, dimensional tolerance and geometric toler-
ance should be satisfied at the same time during the MMP, that is, both 
tolerances should be mathematically reflected in constraint equations. 
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In this paper, it is the first time to expand the scope of variation man-
agement of MMP to the geometric scale. 

As illustrated in Section 2.2, the KPC deviation vector can be rep-

resented by Y =
[
(yR

1 )
T⋯(yR

m)
T
]T

, and the deviation of a single KPC can 

be represented by DMV in the form of yR
h =

[
ΔxR

h ΔyR
h ΔzR

h ΔαR
h ΔβR

h ΔγR
h
]T. 

According to the concept of invariance, tolerances only restrict non- 
invariant elements of DMV [35]. Planar and cylindrical KPCs account 
for the vast majority in MMPs. The planar feature has three invariants: 
two translations parallel to the plane and the rotation around the normal 
vector of the plane, while the cylindrical feature has two: the translation 
along and the rotation around its own axis. Hence, the constraint 
tolerance for planar KPC can be simplified as [∞ ∞w α β ∞]

T and that 
of cylindrical KPC is [u v ∞α β ∞]

T , where TKPC
h = [u, v,w, α, β, γ] in-

cludes six constraint elements in the form of DMV for general features. 
According to the variation propagation model of Eq. (4), the vari-

ability of a KPC, indexed as h, can be calculated as: 

Σyh = ΓhΣUΓT
h , h = 1, ...,m (35)  

where Σyh is the 6 × 6 covariance matrix indicating the deviation of hth 

KPC, whose six diagonal elements are the variances of six elements in 
yh = [ΔxΔyΔzΔαΔβΔγ]T, i.e., Σyh [ρ, ρ] = Var(yh[ρ]), ρ = 1, 2, ⋯, 6. To 
ensure the quality, it should be restricted by the tolerance TKPC

h , which 
can be denoted by Σyh [ρ,ρ] ≤ Var(TKPC

h [ρ]). 
For dimensional and various geometric tolerances, Loose et al. [12] 

firstly integrated GD&T and constrained the deviations based on 
boundary points. However, the number of constraint equations depends 
on the quantity of boundary points, and each KPC requires at least four 
boundary points, which means that a large number of nonlinear con-
straints require a complicated and time-consuming optimization algo-
rithm. Therefore, new constraint method needs to be proposed for Σyh . 

Table 2 shows the general deviations in dimensional and geometric 
scale for two types of features and builds the constraint relations be-
tween DMV elements according to various tolerances. For each non- 
invariant element, the allowable range is restricted as well. The planar 
KPC is constrained by parallelism tolerance ε besides dimensional 
tolerance Td. Roy and Li [36] proposed the variation constraint in-
equalities of planar feature. For other geometric tolerances in planar 
feature, such as angularity and perpendicularity, the solution is to 
multiply the deviation DMV by a homogeneous transformation matrix. 
For the cylindrical KPC, the centreline is constrained. The case in Table 2 
is marked with the tolerance ϕω w.r.t. the GD&T datum features A and 
B. 

The variance of the elements of interest in TKPC
h is simulated by 

Monte Carlo method. For instance, w is the focus of planar feature, it has 
a variance of 0.0126 when Td =0.1 mm, ε =0.05 mm, a =300 mm, b 
=100 mm, and the times of simulation is 10000. That means the quality 
constraint of this KPC is ΣYh [3,3] ≤ 0.0126. 

2.4.3. Optimization model 
Since the objective functions and constraints are available, this 

subsection will formulate the optimization model for KCC variation 
management in MMPs. 

The overall variation management cost at time t can be calculated as 

C(t) = Cf
M(t;T, af ) + Cc

M(t; a
c) (36) 

The long-run expected variation management cost per unit time is 

Φ(T, a) ≡ lim
t→∞

∑t

τ=0
E(C(τ))

t
= lim

t→∞

∑t

τ=0
E

(
∑

i∈St

(
wi

Ti
+ cf

0i) +
∑

j∈St

(cc
j + cc

0j)

)

t

=
∑p

i=1

∑q

j=1

⎛

⎜
⎜
⎝lim

t→∞

∑t

τ=0
(E(Cf ,i

M (τ)) + E(Cc,j
M (τ)))

t

⎞

⎟
⎟
⎠

(37)  

where Cf ,i
M (τ) ≡

{
wi/Ti + cf

0i, ifi ∈ St

0, otherwise 
and Cc,j

M (τ) ≡
{

cc
j + cc

0j, ifj ∈ St

0, otherwise
. 

For the quality loss L(Y(t);T, a), the expected value of quality loss is 

E(L(Y)) = E

(
∑m

i=1

∑m

j=1
sijYiYj

)

=
∑m

i=1

∑m

j=1
sijCov(Yi,Yj)

=
∑n

r=1

(
ΓT
(:,r)SΓ(:,r)

)
Var(Ur) =

∑n

r=1
ρrVar(Ur)

(38)  

where sij is the (i, j)th element of matrix S, ρr ≡ ΓT
(:,r)SΓ(:,r), and ρrVar(Ur)

denotes the contribution of rth KCC to the quality loss. 
Therefore, the long-run expected cost per unit time can be obtained 

by 

Ψ(T, a) ≡ lim
t→∞

∑t

τ=0
E(L(Y(τ)))

t
= lim

t→∞

∑t

τ=0

(
∑n

r=1
ρrVar(Ur)

)

t

=
∑n

r=1

⎛

⎜
⎜
⎝lim

t→∞

∑t

τ=0
Lr(Y(τ))

t

⎞

⎟
⎟
⎠ (39) 

Table 2 
Constraint relations considering geometric tolerances.   

The planar KPC The cylindrical KPC 

Tolerance condition dimensional tolerance Td position tolerance ϕω  
parallelism tolerance ε 

Schematic diagram 

Constraint relations 
− ε/2 ≤ (α⋅y+ β⋅x) ≤ ε/2  

(u + β⋅z)2
+ (v + α⋅z)2

≤ (ω/2)2  

− Td/2 ≤ (w+ α⋅y+ β⋅x) ≤ Td/2  

Allowable range of DMV non-invariant elements 

− ε/b ≤ α ≤ ε/b  − ω/2l ≤ α ≤ ω/2l  
− ε/a ≤ β ≤ ε/a  − ω/2l ≤ β ≤ ω/2l  
− Td/2 ≤ w ≤ Td/2  − ω/2 ≤ u ≤ ω/2   

− ω/2 ≤ v ≤ ω/2   
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The objective of the model is to minimize the variation management 
cost and minimize quality loss, so that optimal values for all decision 
parameters of variant management in MMPs can be obtained to achieve 
quality-cost equilibrium. The optimization model is formulated as 

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(T, a) =
∑p

i=1

∑q

j=1

⎛

⎜
⎜
⎝lim

t→∞

∑t

τ=0
(E(Cf ,i

M (τ)) + E(Cc,j
M (τ)))

t

⎞

⎟
⎟
⎠

Ψ(T, a) =
∑n

r=1

⎛

⎜
⎜
⎝lim

t→∞

∑t

τ=0
Lr(Y(τ))

t

⎞

⎟
⎟
⎠

(40)  

subjected to Σyh [ρ,ρ] ≤ Var(TKPC
h [ρ]), 0 ≤ Ti ≤ Tmax

i , af
i ≥ 0, ac

j ≥ 0, ∀i, j,r,
h,ρ. 

3. Case study 

3.1. Problem description 

The automotive engine cylinder block machining (see Fig. 4) is a 
typical MMP that consists of more than twenty stages. The top surface of 
engine cylinder block serves as the joint surface with the engine cylinder 
head [37], and its quality seriously affects the sealing performance of the 
engine [38,39]. Therefore, this paper focuses on the machining of top 
surface and extracts three representative sequential stages from real 
production. These three sequential stages can reflect the variation 
propagation in MMP and contain different kinds of locating pair, which 
can effectively verify the proposed KCC variation management method. 

Fig. 5 briefly describes the three stages. Detail information including 
the datum features and the nominal locations of machining features w.r. 
t. reference CS are listed in Table 3. Specifically, OP10 adopts the con-
ventional 3-2-1 locating scheme and T1, T2, T3, U1, U2 and W are rough 
datum features of the workpiece. The deviation of #299 machined at 
OP10 and the deviations of two holes drilled at other stage are part of 
variation sources for the machining features at OP20. Similarly, the 
datum variations from OP20 accumulate deviations at OP30, which 
construct the SoV. OP20 and OP30 both adopt the pin-hole locating 
scheme including locating pairs of a four-way pin and a two-way pin. 
After OP30, the machined workpiece is moved to inspection to measure 
the KPC defined by the surface #399. The dimensional tolerance for this 
KPC is ±0.05 mm and a parallelism tolerance is 0.03 mm w.r.t. the 
GD&T datum features #499. 

In this case, 19 KCCs are considered for variation management (r =

1, ⋯, 19), including six locators in OP10 (P1 − P6), three locators and 
two pins in both OP20 (P7 − P11) and OP30 (P12 − P16), and one cutting 
tool in each stage (Q1 − Q3). The objective of variation management for 
MMPs is to assign optimal tolerances and replacement cycles for each 

KCC to achieve the quality-cost equilibrium. 

3.2. Numerical analysis 

A numerical analysis was conducted with the parameters presented 
in Table 4 to optimize the decision parameters T and a. Several multi- 
objective optimization methods are available in the literature to solve 
this model. The weighted method is the most widely used but it involves 
subjectivity or bias in specifying weights when aggregate incomparable 
objectives into a single equivalent function [40]. Similarly, the Archi-
medean and non-Archimedean goal programming methods suffer the 
difficulty in determining the ranking of the goals in a pre-emptive 
preference order. The MCGP approach [41] helps to avoid the above 
difficulties and is adopted in this paper. The underlying philosophy 
when using the Chebyshev distance metric is that of balance. That is, this 
method is trying to achieve a good balance between the achievement of 
the set of goals as opposed to the lexicographic approach which delib-
erately prioritizes some goals over others or the weighted approach 
which chooses the set of decision variable values which together make 
the achievement function lowest [42]. Therefore, the MCGP approach 
has the potential to give the optimal solution where a balance between 
the levels of satisfaction of the goals is needed [43]. 

For specific steps, first decompose the model into two single- 
objective optimization problems under the same constraints. Each one 
is solved by fmincon function in MATLAB which adopts the method of 
sequential quadratic programming (SQP). The SQP method is an effi-
cient nonlinear programming algorithm and has the property of fast 
convergence. The solution of SQP is equivalent to solving a sequence of 
quadratic sub-problems. The objective values of the solutions to these 
two decomposed problems can be expressed as Table 5. 

The values of two objectives cannot be compared directly. Mini-
mizing variation management cost means a higher quality loss, and 
reducing quality loss leads to an increase of cost. Since neither situation 
is desirable, it calls for the MCGP method to obtain a compromised so-
lution. It can be interpreted by fuzzy programming terms, and the fuzzy 
membership functions of two objectives are expressed as [44] 

μ1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1,Φ(T, a) ≤ Φ(T, a)∗1

Φ(T, a)∗2 − Φ(T, a)
Φ(T, a)∗2 − Φ(T, a)∗1

,Φ(T, a)∗1 ≤ Φ(T, a) ≤ Φ(T, a)∗2

0,Φ(T, a) ≥ Φ(T, a)∗2

(41)  

μ2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1,Ψ(T, a) ≤ Ψ(T, a)∗2

Ψ(T, a) − Ψ(T, a)∗1
Ψ(T, a)∗2 − Ψ(T, a)∗1

,Ψ(T, a)∗2 ≤ Ψ(T, a) ≤ Ψ(T, a)∗1

0,Ψ(T, a) ≥ Ψ(T, a)∗1

(42) 

The best distance from two objectives’ worst values is the 

Fig. 4. The automotive engine cylinder block.  
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compromised solution which can be obtained by maximizing δ. It is 
formulated as 

maxδ (43)  

subjected to δ ≤
Φ(T,a)∗2 − Φ(T,a)
Φ(T,a)∗2 − Φ(T,a)∗1

, δ ≤
Ψ(T,a)− Ψ(T,a)∗1

Ψ(T,a)∗2 − Ψ(T,a)∗1
, and all constraints in 

original model. 
The solution to the model is the equilibrium point of quality and cost, 

specifically, δ = 0.814 with Φ(T, a)∗ = 1.820 and Ψ(T, a)∗ = 0.279. The 
optimal tolerance and replacement cycle for each KCC are listed in 
Table 6. The variation management strategies for diverse KCCs are 
different because each KCC contributes differently to the quality loss. 
For example, the variation of locator P4 has little impact on the quality of 
final workpiece, a looser tolerance and a longer replacement cycle are 
assigned, which can help to reduce cost while the quality is still kept at a 
desirable level. 

3.3. Comparison and discussion 

Corresponding to the three major contributions of this paper, the 
superiority of the proposed method is compared and discussed in three 
aspects: (i) application scenarios, (ii) geometric tolerance integration, 
and (iii) manufacturing system performance. 

For the application scenarios comparison, two types of locating 
schemes are involved in this case. However, the existing KCC variation 
management researches for MMPs can only handle the conventional 3-2- 
1 locating scheme in the form of point-to-surface contact. This paper 

derives the variation distribution for the new KCC type in degradation 
state and adds it to the new variation management model, which 
overcomes this limitation and expands the applicable scenarios. 

In order to demonstrate the improvement of the variation manage-
ment method after integrating geometric tolerance, 10000 Monte Carlo 
simulations are run for two MMPs. The two MMPs for this case are 
defined by the output of variation management strategy, one of which, 
as in previous studies, does not consider geometric tolerances, and the 
other adopts the strategy obtained by the proposed method. A random 
value for each KCC is generated according to its probability density 
function for each simulation. To simulate the effects of un-modelled 

noise, a random variable that follows the normal distribution of N
(

0,

(0.005/6)2
)

is added to each simulation. The simulation results show 

that the proposed method keeps the 99.21 % of the workpieces con-
forming to the final quality specifications while only 90.44 % can be 
ensured if geometric tolerance is not integrated in the variation man-
agement strategy. There is a certain difference in the proportion of 
qualified workpieces because the lack of geometric tolerance consider-
ation leads to looser tolerances while establishing optimization prob-
lems. Therefore, by considering the effects of geometric tolerance on 
MMPs, the variation management method improves the number of 
workpieces within specifications by 9.7 %, indicating the necessity of 
geometric tolerance integration. Besides, Fig. 6 shows the probability 
density distribution of KPC deviation after the Monte Carlo simulations. 
It confirms that, for the case study, the KPC variability can be approxi-
mated as a normal distribution despite that some KCCs are not normally 
distributed. 

For the further comparison of manufacturing system performance, 
two common approaches for KCC variation management in today’s 

Fig. 5. Three stages of the MMP.  

Table 3 
Process description and nominal locations of key features.  

Stage Datum features Process descriptions 0R
0  

0tR
0  

OP10 T1, T2, T3, U1, 
U2, W 

Mill flank surface 
#299 

[0,0,0] [-170.5,138,0] 

OP20 #299, #201, 
#202 

Mill bottom surface 
#499 

[0,π/2,π/ 
2] 

[17.5,248,-30.5] 

OP30 #499, #401, 
#402 

Mill top surface 
#399 

[0,-π/2,π/ 
2] 

[-218.5,248,- 
30.5]  

Table 4 
Parameters for variation management in the case study.  

point-to-surface locating pair related 
(mm) 

pin-hole locating pair related 
(mm) 

cutting tool related 
(mm) 

cost function related 
($) 

quality loss related (unit/ 
mm2) 

constrain related 
(mm) 

Gk  1.9× 10− 7  μ0  5× 10− 7  Ek  0.0113 wi  200 q 1 a 108 

μΔ  8.7× 10− 8  μ1  1× 10− 6  Fk  0.0019 cf
0i  

200   b 326.5 

σΔ  2.0× 10− 7  β  1× 10− 3  μΔ  3.4× 10− 4  cc
j  50   Tmax

i  0.1   

μΔ  5.0× 10− 7  σΔ  6.8× 10− 3  cc
0j  100       

σΔ  5.0× 10− 5           

Table 5 
Solution of two single-objective problems.   

min Φ(T,a) min Ψ(T,a) |Difference|

Value of Φ(T,a) Φ(T, a)∗1 = 1.678  Φ(T, a)∗2 = 2.441  0.763 

Value of Ψ(T,a) Ψ(T, a)∗1 = 0.297  Ψ(T, a)∗2 = 0.275  0.022  
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automotive industry are considered. The first is purely based on expe-
rience and uniformly sets the tolerances of fixture elements to be 0.1 
mm. The second is the process-oriented tolerancing method, which 
provides specific tolerance for each fixture element to deliver a high- 
quality product. The replacement cycle of fixture element is fixed to 
10000 operations and that of cutting tool is fixed to 1000 operations 
based on experience. The proposed method integrates tolerance and 
maintenance planning for KCC and the comparison with above two 
conventional methods are shown in Table 7. 

Compared with the engineering experience approach, the process- 

oriented tolerancing method optimizes the tolerance configuration 
based on the impact of each KCC on product quality, so that the long- 
term average quality loss is much smaller without the increase of total 
cost. This reflects the significance of tolerance allocation for KCC in 
manufacturing system. For the method proposed in this paper, the 
maintenance planning is added to the process-oriented tolerancing to 
form a complete concept of variation management. Although this 
method suffers a much higher cost at the first setup due to its tighter 
tolerance, it has a similar long-term average KCC cost to the process- 
oriented tolerancing method because of a longer service time. More 

Fig. 6. The distribution of KCCs and KPC deviation after 10000 simulations.  

Table 6 
Optimal variation management strategy for each KCC.  

i 1 2 3 4 5 6 7 8 9 10 

Ti  0.028 0.021 0.031 0.093 0.087 0.016 0.031 0.028 0.029 0.018 

af
i  

3.43 2.32 3.67 11.82 10.18 1.96 3.41 3.58 3.21 1.98 

i 11 12 13 14 15 16 j 1 2 3 
Ti  0.013 0.029 0.025 0.027 0.092 0.088 

ac
j  4.10 4.94 5.11 

af
i  1.51 3.54 3.11 3.22 11.27 11.0 

*The unit of T is “mm”, the unit of af
i is “×104 operations”, and the unit of ac

j is “×103 operations”. 

K. Wang et al.                                                                                                                                                                                                                                   



Journal of Manufacturing Systems 59 (2021) 441–452

451

important, the proposed method has a significant advantage in the long- 
term average maintenance cost due to the lower maintenance frequency, 
which is ultimately reflected in a 33.2 % saving in total variation 
management cost. For the quality, process-oriented tolerancing signifi-
cantly improves product quality and reduces the long-term average 
quality loss by 49.3 %. The proposed method maintains a similar quality 
loss level while greatly reducing the cost of variation management. 
Therefore, in terms of quality and cost, the method proposed in this 
paper achieves the equilibrium and performs better than the two con-
ventional methods wildly adopted in manufacturing industry. 

From the deviation measurement results of KPCs obtained in actual 
production, the adoption of proposed method has also improved the 
performance of the manufacturing system. According to the calculation 
of process capacity from real production workshop, the process capacity 
index of the top surface machining is increased to more than 1.33, and 
the defective rate is reduced from 0.27 % to 0.11 %. The annual output 
of this type of engine cylinder block is 350,000 units and the cost of a 
single one is nearly 70 USD. Simply by reducing defective rate, the 
annual accumulated cost can be saved by nearly 400,000 USD, not to 
mention the cost reduction brought by the optimization of maintenance 
strategy. Therefore, the superiority of the proposed method has been 
fully discussed in this section, which can greatly improve the 
manufacturing system performance in terms of both quality and cost. 

4. Conclusion 

This paper presents a new variation management framework for 
KCCs in MMPs considering quality-cost equilibrium. The new concept of 
variation management consists of process-oriented tolerancing and 
maintenance planning. In the state space model based MMPs, the vari-
ation distribution for each KCC is derived in its degradation state. The 
optimization model assigns the optimal variation management strategy 
for each KCC based on its impact to the manufacturing system. The 
limitations in existing researches, such as application scenario, quality 
specification integrity, and quality-cost equilibrium are fully elaborated 
and resolved. A case study of automotive engine cylinder block MMP is 
conducted to demonstrate the potentials of the proposed variation 
management methodology. The results reveal that, the missing of geo-
metric tolerance constraint when assigning the variation management 
strategy will lead to a decrease in workpiece qualification rate, and the 
proposed method can achieve desirable manufacturing system perfor-
mance in terms of quality and cost with multiple locating schemes 
covered. 

In this paper, a three-stage automotive engine cylinder block 
machining process is adopted as the example to demonstrate the pro-
posed method. It is worth noting that the overall framework, the state 
space model for variation propagation, and the KCC degradation model 
are all quite general for various types of MMPs, which means it has 
strong scalability for handling various production scenarios. As future 
work, the machining parameters can be included in the research. Opti-
mizing the machining parameters can effectively improve production 

efficiency and reduce production costs. However, the adjustment of the 
machining parameters may bring about problems such as the increase in 
KCC degradation rate, which will also cause a decline in product quality. 
Hence, the simultaneous optimization with machining parameters is an 
interesting issue for variation management. Secondly, preventive 
maintenance can update the maintenance schedule based on the online 
measurement of process conditions, reflecting the dynamics of the 
maintenance. Therefore, the choice of maintenance methodology based 
on the consideration of measurement cost and feasibility is also a subject 
worthy of further study. 
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