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Abstract—As mission-critical components in aircraft flap 
actuation systems, aerospace self-lubricating bearings play 
a pivotal role in ensuring operational safety during critical 
flight phases. Conventional machine learning approaches for 
remaining useful life (RUL) prediction suffer from limited 
time-series and nonlinear modelling capabilities. Especially 
individual models, built on a single algorithmic paradigm, 
struggle to address the complex, multi-dimensional chal-
lenges of RUL prediction. In order to solve the above chal-
lenge, this study proposes an innovative hybrid deep learn-
ing method integrating modernized temporal convolutional 
Networks (ModernTCN) with attention-enhanced Transformer 
(MTCAT) for RUL prediction. First, ModernTCN employs opti-
mized dilated convolutions to capture multi-scale local temporal patterns efficiently. Second, an attention-enhanced 
Transformer leverages multi-head self-attention to model long-range dependencies and global degradation trends. 
Finally, the MTCAT is validated on the custom test rig, replicating real-world conditions, where it achieves a 30-50% 
reduction in root mean square error (RMSE) compared to baseline models. By autonomously learning hierarchical 
features from raw data, the MTCAT model minimizes manual feature engineering, demonstrating robustness and scala-
bility for RUL prediction. 
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I.  Introduction 

S critical components in aircraft flap hinge mecha-

nisms, self-lubricating bearings play a pivotal role in 

ensuring safe takeoff and landing operations, making 

the prediction of their remaining useful life particularly 

important [1]. Unlike conventional rolling bearings requiring 

periodic maintenance, self-lubricating films at friction inter-

faces, to achieve Automatic lubrication counterparts utilize in-

tegrated solid lubricants or self-adaptive effectively [2]. The op-

erational lifespan of these bearings is governed by complex 

multi-physics interactions involving material degradation ki-

netics, tribological evolution, thermo-mechanical coupling ef-

fects, and stochastic load spectrum variations, creating substan-

tial challenges for accurate RUL estimation. 

RUL is a critical aspect of ensuring the effectiveness of prog-

nostics and health management (PHM) [3]. There are two main 

types of approaches for predicting the life of self-lubricating 
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bearings: the first is the statistical method based on test data, 

while the second involves developing the physical model of the 

bearing to derive a life prediction model [4-8]. The RUL pre-

diction method based on statistical model estimates the remain-

ing life of the machine by establishing a statistical model based 

on mathematical statistics. The prediction result is usually given 

in the form of conditional probability density function based on 

observation [9]. The statistical approaches use inspection data 

such as vibration signals and fit them to statistical models like 

artificial neural networks (ANN) and autoregressive models 

(ARMA) to predict the RUL of bearings. Common methods in-

clude autoregressive model, Markov model, principal compo-

nent analysis (PCA), proportional hazard model, etc. [10-12]. 

This approach is beneficial for its adaptability and accuracy, es-

pecially when long-term data is available. The physical-based 

method mainly depends on comprehensive knowledge of phys-

ical mechanisms and environmental factors. Common models 
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include the Paris and Forman models, which are primarily used 

to describe crack propagation [13], and Finite Element Analysis 

(FEA) is commonly used for predicting tool wear and die ser-

vice life [14]. Physical model prediction methods, based on 

well-defined physical laws, offer high accuracy and interpreta-

bility, making them effective in cases with well-understood 

degradation mechanisms. 

Traditional data-driven methods have effectively addressed 

RUL prediction by leveraging statistical and machine learning 

techniques. In recent years, deep learning approaches have sig-

nificantly advanced this field, offering enhanced capabilities to 

model complex, nonlinear degradation patterns in bearings [15]. 

Compared to traditional machine learning methods, deep learn-

ing models possess strong feature learning capabilities, nonlin-

ear modeling abilities, end-to-end learning capacities, enhanced 

model expressiveness, and superior generalization capabilities. 

These advantages enable deep learning models to effectively 

extract and leverage information from data, resulting in more 

accurate and reliable life predictions [16]. Common deep learn-

ing methods include Recurrent Neural Networks (RNN), Con-

volutional Neural Networks (CNN), Gated Recurrent Units 

(GRU), Generative Adversarial Networks (GAN), and Trans-

former models [17]. 

The emergence of large language models (LLMs) has funda-

mentally transformed time-series prognostics, establishing 

Transformer architectures as the dominant paradigm for indus-

trial RUL prediction [18][19]. Recent innovations include 

Wang et al.'s [20] deep multi-scale window transformer 

(DMW-Trans), which implements multi-resolution time-fre-

quency analysis through cascaded window transformer blocks 

and feature fusion modules, progressively expanding receptive 

fields to encapsulate cross-scale degradation characteristics. 

Hou et al. [21] developed a cross-domain adaptive framework 

employing multi-modal feature disentanglement and two-stage 

transformer architecture, effectively addressing operational 

condition variability through secondary feature engineering and 

domain-invariant representation learning. Cutting-edge solu-

tions like Li et al.'s [22] knowledge-enhanced convolutional 

transformer (KE-CTEM) synergize physical knowledge em-

bedding with data-driven approaches, introducing a feature ex-

traction neural network (FENN) to construct physics-informed 

feature banks that enhance model generalizability under varia-

ble operating conditions. Parallel advancements in temporal 

convolution architectures include Qin et al.'s [23] adaptive 

multi-scale integration model, which innovatively embeds 

multi-scale evaluation indices into neural network dataflows 

through gated convolutional units (GCUs) and dilated TCN 

structures. The progression towards end-to-end learning is ex-

emplified by Sun et al.'s [24] MDSCT framework, which com-

bines multi-scale separable convolutions with optimized Trans-

former encoders (PPSformer) to directly process raw vibration 

signals while maintaining both local feature sensitivity and 

global dependency modelling.  

Hybrid model approaches have also gained significant popu-

larity. Liu et al. [25] introduced a Transformer-based model 

with spatio-temporal attention to predict bearing RUL from 

noisy vibration signals. The model captures both spatial de-

pendencies (across multiple sensors) and temporal degradation 

trends, using a sliding window approach for time-series pro-

cessing.  Chen et al. [26] presented a domain-adaptive deep 

learning framework using a CNN-Transformer hybrid to predict 

RUL across different bearing types and machines. The model 

employs transfer learning to align source and target domain fea-

tures, addressing variability in sensor data distributions. Wu et 

al. [27] propose a hybrid model combining multi-scale CNNs 

and gated recurrent units (GRUs) to extract and process degra-

dation features from bearing vibration signals. The model uses 

a feature fusion strategy to integrate local and global patterns, 

improving RUL prediction under variable operating conditions. 

Despite the development of various methods for predicting 

the RUL of self-lubricated bearings, conventional monolithic 

algorithms still encounter significant limitations in adapting to 

multidimensional data and modeling cross-domain degradation 

mechanisms in industrial settings. Moreover, these approaches 

often fail to incorporate time-series features. To overcome the 

persistent challenges in RUL prediction, an innovative hybrid 

method that synergistically integrates Modernized Temporal 

Convolutional Networks (ModernTCN) with attention-en-

hanced Transformer (MTCAT) is proposed, specifically engi-

neered for aerospace self-lubricating bearing RUL prediction 

under real operational constraints. The contribution of this pa-

per is as follows: 

1) Dual-modal temporal fusion mechanism: A ModernTCN-

Transformer co-modelling method is pioneered, it establishes 

cross-attention connections between ModernTCN’s hierar-

chical dilated convolutions and Transformer's multi-head self-

attention mechanisms. This architecture achieves complemen-

tary advantages: the ModernTCN excels in local temporal fea-

ture extraction through optimized causal dilation structures, 

while the Transformer captures global degradation trajectories 

via self-attention-based dependency modelling. 

2) Multi-scale representation learning: MTCAT implements 

three-tier temporal optimization through (a) ModernTCN’s 

adaptive receptive field expansion with progressive dilation 

rates, (b) Transformer's dimensionally robust position encoding 

enhanced by degradation-aware attention weights, and (c) hy-

brid feature fusion gates that dynamically balance local-global 

temporal representations across varying operational phases. 

The remainder of this paper is organized as follows: Section 

Ⅱ elucidates the detailed innovations and mathematical formu-

lations of the proposed method. Section Ⅲ and section Ⅳ pre-

sents comprehensive experimental validation using proprietary 

aerospace bearing full-life testing rig. Section Ⅴ discusses com-

parative performance benchmarks and provides concluding re-

marks with industrial implementation insights. 

II. PROPOSED METHOD 

In this section, MTCAT model is proposed, which aims to 

effectively deal with complex dependencies in temporal data, 

further improve the prediction accuracy and enhance the gener-

alization ability. The ModernTCN module can expand the re-

ceptive field through a layer-by-layer inflated convolution, 

which can expand the sensory field and capture feature infor-

mation of different time scales at multiple levels, the feature 

expression capability is strengthened by virtue of its powerful 

self-attention mechanism. The combination of the two enables 

the proposed method to fully utilize their respective strengths, 

forming an efficient solution for the prediction of complex 

time-series data. The entire design strategy of the model is 
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introduced first, covering the complete workflow from data pre-

processing and model construction to lifespan prediction. Then, 

the model’s dimensional enhancement and feature decoupling 

in time-series modelling is described. Finally, how optimization 

is performed in event sequence modelling is explained. 

A. Model Design Strategy 

The workflow diagram is shown in Fig. 1. First, raw bearing 

signals are preprocessed into frequency-domain features. Sec-

ond, MTCAT adopts a serial design. Specifically, the 

ModernTCN module first processes the time domain data, fre-

quency domain data, and time-frequency domain analysis data 

calculated from the original waveform stream data to capture 

local and global features. Then the Transformer module re-

ceives the feature representation output by the ModernTCN 

module, and further deepens the modelling capabilities of time-

series data through a multiple attention mechanism to achieve 

dynamic modelling of global dependencies. Finally, the linear 

output layer maps the learned features into scalar prediction re-

sults, thus completing the entire modelling process. This design 

enables the model to integrate the short-term dynamic changes 

and long-term dependency patterns of time-series data, bringing 

significant prediction performance advantages.  

 

 
Fig. 1.  MTCAT method workflow diagram 

 

1) Step 1: Preprocessing raw bearing signals into frequency-

domain features via Fast Fourier Transform (FFT) and wavelet 

transform (WT).  

The workflow commences with the acquisition of raw bearing 

vibration signals as one-dimensional time-series data, typically 

sampled at 25.6 kHz for 1.28 seconds, yielding 32,768 data points 

per sample. These signals undergo FFT to convert them into the 

frequency domain, generating a spectrogram that captures fre-

quency-domain features like dominant frequencies and their am-

plitudes, which are indicative of degradation patterns. The result-

ing data is structured into a two-dimensional format, such as [60, 

1024], representing 60-time windows (1-minute intervals) and 

1024 frequency bins, preparing it for model input. 

2) Step 2: Training a hybrid ModernTCN-Transformer model 

for robust time-series modelling 

The preprocessed features are fed into a hybrid ModernTCN-

Transformer model, starting with the ModernTCN module, 

which uses depth-wise convolutions with dilated kernels to ex-

tract local temporal patterns (e.g., short-term vibration changes), 

enhanced by batch normalization and convolutional feedforward 

networks. The Transformer module then processes these features 

using multi-head self-attention to capture long-range dependen-

cies (e.g., linking early degradation to failure trends), with posi-

tional encoding preserving temporal order and feedforward lay-

ers refining global representations. With the local sensitivity of 

ModernTCN with Transformer’s global modelling, MTCAT en-

suring robust time-series analysis across multi-scale degradation 

dynamics. Table I shows the training process of the proposed 

model. 
 TABLE I 

TRAINING PROCESS OF THE MTCAT 

 
3) Step 3. Predicting RUL with regression, optimization, and 

degradation visualization 

The model frames RUL prediction as a regression task, ex-

tracts feature to remaining life, and uses Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE) losses through 

backpropagation. It also visualizes the bearing’s degradation 

stages including healthy, mild, and severe stage, and a health 

index curve (1 to 0) over time is built [32]. This dual approach 

of regression-based prediction and stage visualization enhances 

practical applicability for bearing health management, enabling 

proactive maintenance strategies.  

For the MTCAT building part, the input sequence is a one-

dimensional time-series of preprocessed bearing vibration sig-

nals after FFT, reshaped into a 2D/3D tensor for the model input. 

It captures time-frequency features reflecting bearing degrada-

tion. ModernTCN extracts local patterns, Transformer models 

global trends, enabling accurate RUL prediction. The input se-

quence X = {𝑥1, 𝑥2 … 𝑥𝑇} is first projected into the latent space 

 

Module Description 

RUL dataset 

Custom dataset class used to generate bearing data based 

on time-series. It supports sliding feature windows and can 

add time-related features like relative position and 

differential features. 

Positional encoding 

Positional encoding module used to provide positional 

information within the sequence. It generates position 

encodings using sine and cosine functions and adds them to 

the input features. 

Modernized conv1d 

Modernized convolution module that performs convolution 

using multiple kernel sizes (e.g., 3, 5, 7) to extract multi-

scale time-series features, and outputs the average of these 

features. 

Improved 

ModernTCN 

Improved Modern TCN that extracts time-series features 

through input projection, convolution modules, and 

residual connections, outputting the features after 

convolution. 

Improved 

ModernTCN-

Transformer 

A hybrid model combining the improved Modern TCN and 

Transformer. It includes feature embedding, ModernTCN 

feature extraction, positional encoding, Transformer 

encoder, and global attention mechanism to extract key 

features in the time-series and predict RUL. 

Monotonic 

regression loss 

Monotonic regularization loss function that combines 

RMSE loss with regularization that encourages predictions 

to decrease over time, improving the accuracy of the 

predictions. 

Training 

The training process includes forward pass, loss 

computation, backpropagation, gradient updates, and early 

stopping strategy, using the AdamW optimizer and 

learning rate scheduler. 

Evaluation 

Evaluates the model's performance, calculates and outputs 

metrics like MAE and RMSE, and saves the prediction 

results to a file. 
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through a linear mapping: 

z W x b , 1,...,t in t in t T= + =
 

(1) 

where  W𝑖𝑛 𝜖 R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑖𝑛𝑝𝑢𝑡is the weight matrix and 𝑑𝑚𝑜𝑑𝑒𝑙  is 

the hidden dimension of the model. Next, in the ModernTCN 

module, parallel convolution branches with multi-scale convo-

lution kernels (for example, sizes of 3, 5, 7, and 11) [22] are 

used. Specifically, the convolution output of branch 𝑖 is: 
( ) ( )GELU(BN(Conv1d ( ))), 1,...,i i

t th z i K= =  (2) 

where K represents the number of convolution branches, 𝜎(⋅) 

represents the activation function (GELU), and BN represents 

batch normalization. Finally, the fused feature representation is 

obtained by averaging or other aggregation models: 

( )

1

1 K
i

t t

i

h h
K =

= 
 

(3) 

Then, it passes through the position encoding module, whose 

formula is the classic sine-cosine encoding: 

model

( ,2 ) 2
PE sin( )

10000

t i i

d

t
=

 
(4) 

model

( ,2 1) 2
PE cos( )

10000

t i i

d

t
+ =

 
(5) 

After adding the positional encoding to the output of the con-

volutional module, it is input into the Transformer module for 

global dependency modelling. The output of the Transformer 

encoder is a sequence {𝑡1, 𝑡2, … , 𝑡𝑇}. In order to obtain a global 

sequence representation, global attention pooling is introduced: 

1
1

exp( )
,

exp( )

T T
a T

t tT T
ta jj

w t
g

w t
 

=
=

= = 


 
(6) 

where 𝑤𝑎  are learnable parameters. The final prediction is 

mapped to a scalar output through a regression head: 

ˆ ( ) GELU(W )T

reg r r r ry f g w g b b= = + +  (7) 

The ModernTCN module, which undertakes the key feature 

extraction task, is designed to consist of multiple Temporal 

Blocks, each of which uses convolution operations with differ-

ent expansion rates to gradually expand the sensory field. Spe-

cifically, the first layer of convolution sets the convolution ker-

nel size to 3 and the padding parameter to 2, which can effi-

ciently capture short-term local features; the second layer fur-

ther expands the receptive field by setting the convolution op-

eration with an expansion rate of 2 to capture longer-term de-

pendencies; and the expansion rates of the convolution opera-

tions in the third and the fourth layers are increased to 4 and 8, 

respectively, in order to enhance the ability of modelling long-

term dependencies. This layer-by-layer expansion of the sen-

sory field ensures that the model is able to comprehensively 

capture information at different time scales, significantly im-

proving the learning of complex temporal patterns. 

The Transformer module builds on the features extracted by 

ModernTCN to further enhance the modelling of global tem-

poral dependencies through a multi-head attention mechanism. 

The multi-head attention mechanism achieves the modelling of 

dynamic dependencies between global time steps by calculating 

the relationship weights between different positions in the input 

sequence, thus making up for the shortcomings of the tradi-

tional temporal modelling models in global dependency 

capturing [33]. In addition, in order to fully exploit the expres-

sive power of features, the Transformer module designs a set of 

feature dimension expansion and dimensionality reduction 

strategies, which firstly enhances the feature dimension from 16 

to 2048 through a linear layer in order to learn more complex 

feature relationships in high-dimensional space, and then re-

duces the dimension to 16 through a second linear layer to adapt 

to the subsequent tasks. In order to prevent the overfitting prob-

lem, two layers of Dropout operation are introduced in the mod-

ule, with the dropout probability of each layer set to 0.2, and the 

LayerNorm operation is added to each layer to ensure the sta-

bility of the input data, so as to accelerate the convergence 

speed of the model. 

The linear output layer, as the final module of the model, fur-

ther maps the high-dimensional features output from the Trans-

former into scalar values to adapt to the regression task. 

Through this design, the whole model realizes the organic inte-

gration of local features and global information in the process 

of combining ModernTCN and Transformer modules, which 

can efficiently extract useful information from time-series data 

and generate accurate prediction results. 

B. Dimensionality Enhancement and Feature Decou-
pling 

The decoupling design of features in the ModernTCN mod-

ule is one of its innovations, focusing on independent modelling 

of time and variable dimensions. In traditional convolutional 

models, mixed modelling of time and variable dimensions often 

leads to confusion in information interaction between features, 

making it difficult to effectively capture dynamic relationships 

in a single dimension. ModernTCN achieves independent mod-

elling in the time dimension by introducing deep separable con-

volution (DWConv), which is designed to capture the temporal 

dynamic characteristics of each variable separately and avoid 

interference from other variable information. In addition, 

DWConv significantly expands the effective receptive field 

(ERF) by applying larger convolution kernels, which can cap-

ture complex dependencies on long time scales, making the 

model modelling in the time dimension more accurate. Further-

more, in addition to the original features, position features and 

differential features are added to the input data. 

In order to make full use of high-dimensional information, 

the model uses linear transformations between different mod-

ules to convert dimensions. Before the Transformer, feature ex-

pansion and dimensionality reduction are performed through a 

feedforward network. The process is as follows: 

1 1 2 2= GELU(W ), ' Wu z b z u b+ = +  (8) 

ModernTCN enhances time-series modelling by integrating 

DWConv and Expansion Convolution, effectively capturing 

both short-term and long-term temporal dependencies. The ar-

chitecture employs DWConv to model individual variable dy-

namics independently, while Expansion Convolution progres-

sively ERFs through layered operations, enabling multi-scale 

temporal pattern extraction across different time horizons. 

Compared with traditional models, the considering of the long 

length of time-series data, multi-scale convolution is used in 

model design to adjust the receptive field. Assuming the 
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convolution kernel size is k and the expansion rate is d, the re-

ceptive field of each convolution operation is: 
ReceptiveField = ( 1) 1d k − +  (9) 

C. Optimization for Time-Series Data 

The design of ModernTCN-Transformer takes into account 

the unique characteristics of time-series data, and provides pro-

prietary optimizations in multiple dimensions to enhance the 

model's modelling capability and performance. Time-series 

data often have complex time-dependent patterns, multivariate 

interactions, and dynamically changing feature distributions, 

which pose challenges for model design. To address these char-

acteristics, MTCAT achieves exclusive optimization through 

innovative design. 

For the multivariate interaction characteristics in time-series 

data, ModernTCN introduces an exclusive optimization for 

cross variable dependency modelling. In the ConvFFN module 

[28], univariate features (ConvFFN1) and inter-variate depend-

encies (ConvFFN2) are captured separately through the decom-

position mechanism, ensuring that the model can effectively 

model complex interactions in multivariate time-series. For ex-

ample, in the multivariate missing value filling task, the com-

plete data of certain variables can be used to infer the values of 

the missing variables through cross-variate dependencies, thus 

improving the filling accuracy. The optimization is particularly 

applicable to the analysis of multivariate time-series data and 

can significantly enhance the model’s adaptability in complex 

task scenarios. 

In order to further adapt to the dynamically changing feature 

distributions in time-series data, the model introduces feature 

normalization and regularization strategies. LayerNorm is used 

to normalize the features of each time step, and the calculation 

formula is: 

2
LayerNorm( )

z
z




 

−
=

+

  (10) 

where μ and 𝜎2are the feature mean and variance respectively, 

and γ, β are learnable parameters. 

The model can dynamically adjust the feature distribution to 

cope with the numerical fluctuations of different time periods 

or variables, thus improving the stability of the model. To pre-

vent overfitting and stabilize the training process, regularization 

measures are introduced in each module. Common regulariza-

tion formulas include Dropout, which sets the output of some 

neurons to zero with probability p in the forward propagation: 
Dropout( ) m,m Bernoulli(1 )z z p= −   (11) 

Meanwhile, the Dropout operation (with a dropout probability 

of 0.2) is introduced into the Transformer module. These 

measures make the model more robust in dealing with non-sta-

tionarity and noise in time-series data. 

D. Loss Function Design 

To enhance the transparency and reproducibility of the work, 

the explicit form of the composite loss function have now been 

included and provided. A detailed explanation for incorporating 

monotonicity into the loss design. 

The formulation is as follows: 

1

ˆ
( )

n
i i

mono

i i i

dy dy
L sign

dx dx=

= −  
(12) 

The monotonic regularization loss is defined as: where ˆ
iy  is 

the predicted value, iy  is the actual value, ix  represents the in-

put feature, and sign denotes the direction of the gradient. The 

purpose of this regularization term is to ensure that the pre-

dicted changes align with the actual data's trend, especially in 

cases where monotonicity needs to be preserved, helping the 

model better reflect physical laws or domain-specific con-

straints. 

To combine monotonicity with the RMSE loss, the authors 

integrate both components into a composite loss function as fol-

lows: 
(1 )total RMSE monoL L L = + −  (13) 

III. CASE STUDY Ⅰ: SELF-LUBRICATING BEARING  

A. Self-Lubricating Bearing Experiment Rig 

The experimental object is a self-lubricating bearing with pre-

cise geometric specifications, as depicted in the technical drawing. 

Fig. 2 shows the self-lubricating bearing of our experiment. It fea-

tures an outer diameter of 25 mm, an inner diameter of 15 mm, and 

a width of 19.5 mm, with a spherical outer raceway curvature of 

0.254 mm. The bearing’s design, including a 6° angular misalign-

ment capability, ensures reliable performance under varying loads 

and oscillatory conditions, making it suitable for testing in simu-

lated aircraft operating environments. 

 

 
Fig. 2.  Self-lubricating bearing of the experiment 

 

The bearing is first mounted to the bearing housing to be meas-

ured in the axial direction, and the tension and pressure transfer is 

realized by connecting the loading plate via the loading electric cyl-

inder, while the loading plate is connected to the position of the 

bearing housing to be measured via the long screw to realize the 

tension and pressure loading. Measurement of the axial loading 

force is realized by means of a force transducer. In the radial direc-

tion, the loading module is connected to the servo-electric cylinder 

through the loading actuator, the cylinder is mounted on the bracket 

through the front flange, and the bracket of the servo-electric cyl-

inder is fastened to the cast iron base through the connecting rod 

and bolt. The test rig is shown in Fig. 3.  

The test rig for evaluating the lifespan of self-lubricating bear-

ings comprises four key systems: the transmission system, control 

system, loading system, and measurement system. The 
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transmission system, driven by a servo motor (Delta ECMA-

J11010RS) and a 35:1 reduction gearbox. The control system, uti-

lizing an industrial computer and servo drivers, ensures accurate 

motion and load parameter regulation, while the loading system 

employs servo-electric cylinders and load cells to apply radial and 

axial forces, mimicking real-world stresses. The measurement sys-

tem records essential parameters such as torque, force, and dis-

placement for comprehensive performance assessment. 

 

 
Fig. 3.  Overall structure of test rig for self-lubricating bearings 

 

Fig. 4 shows the detailed rig, the signal acquisition process starts 

with the bearing generating mechanical responses under controlled 

loading and motion, which are captured by Acoustic emission (AE), 

torque, axial, and radial force sensors. These raw signals are am-

plified by signal amplifiers, digitized, and processed to extract fea-

tures for bearing health evaluation. The workflow ensures compre-

hensive data collection, enabling accurate analysis of the bearing’s 

performance and degradation behavior in simulated operational 

environments. 

 

 
Fig. 4.  Detailed part of test rig for self-lubricating bearings 

 

B. Feature Analysis 

The dataset contains data from the operation of self-lubricat-

ing bearings under simulated real operating conditions. These 

data were collected by a variety of sensors, including signals 

from torque sensors, temperature sensors, and AE sensors. AE 

signals and torque signals were focused. The data come from 

long-term experimental studies and field tests, covering a wide 

range of failure modes and operating conditions, which can ef-

fectively reflect the loss and wear characteristics of flap hinges 

under different operating conditions. Table Ⅱ-Ⅲ demonstrates 

the difference of different data processing methods. The fea-

tures are in Table Ⅲ. The feature selection is shown in Fig. 5, 

the correlation heatmap of top 10 features of RUL is showed 

and Top 5 feature trends in Fig. 6-7.  

Feature importance by scoring features based on their 

prognosability, monotonicity, and trendability is accessed to 

evaluate their predictive power, relationship consistency, and 

trend capture ability. Prognosability measures a feature's ability 

to predict changes in the target variable. Monotonicity evaluates 

whether the relationship between the feature and the target var-

iable consistently increases or decreases. Trendability assesses 

the feature's effectiveness in capturing trends over time or 

across other variables. Through the scoring method, the features 

with the most impact on the model can be identified. 
TABLE Ⅱ 

DATA PREPROCESSING METHOD 

 
 

 
Fig. 5.  Selected features based on the rank 

 

Fig. 5 presents a bar chart of selected time-series features for 

RUL prediction of self-lubricating bearings, derived from 

acoustic emission and torque signals collected under simulated 

operating conditions. It displays 20 features (F0 to F19) with 

their scores (0 to 1.4) based on prognosability (dark blue) and 

monotonicity and trendability (light blue), with a red dashed 

line separating the top 10 features (e.g., F6, F16, F8) for their 

high predictive relevance. The dataset, sourced from long-term 

tests capturing diverse failure modes, supports the feature se-

lection process outlined in reference [2], with further analysis 

in subsequent correlation heatmaps and trend visualizations. 

Feature FFT WT 

Time-frequency 

resolution 

Fixed, with clear frequency-

domain information but 

blurred time-domain 

information. 

Dynamic, providing both 

time and frequency local 

information with multi-scale 

analysis capability. 

Applicable 

scenario 

Global frequency analysis, 

suitable for periodic signals or 

stable frequency components. 

Local feature analysis, 

suitable for non-stationary 

signals, transient signals, 

edge detection, etc. 

Computational 

complexity 

Depends on the signal length 

and FFT algorithm, generally 

less complex. 

Depends on the specific 

wavelet basis and 

decomposition level, usually 

more complex than FFT. 

Frequency 

resolution 

Improves with signal length, 

suitable for analyzing periodic 

signals. 

Analyzes signals at different 

scales, suitable for analyzing 

complex and non-stationary 

signals. 
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TABLE Ⅲ 

CALCULATED FEATURES 

 
The correlation heatmap is a 10×10 grid where each cell dis-

plays the Pearson correlation coefficient between feature pairs, 

ranging from -1.00 (strong negative correlation, deep blue) to 

1.00 (strong positive correlation, deep red). The color gradient 

intuitively indicates the strength of the correlation. Fig. 6 shows 

the correlation heatmap of top 10 features of RUL. The diagonal 

cells have an implicit value of 1.00, representing perfect corre-

lation of features with themselves, while off-diagonal cells dis-

play the correlations between different features. For example, 

the correlation coefficient between q1 and q3 is as high as 0.99 

(deep red), indicating a very strong positive correlation, while 

the correlation coefficient between min and q1 is -0.99 (deep 

blue), showing a very strong negative correlation. Additionally, 

the correlation between scaled RUL and other features is gen-

erally weak, with bandwidth (0.42) and kurtosis (0.33) showing 

the highest positive correlations. 

By analyzing the heatmap results of the features, significant 

multicollinearity between features is found. For instance, the 

correlation coefficient between rms and std is 1.00, indicating 

potential redundancy. Moreover, the correlation analysis be-

tween scaled RUL and other features suggests that bandwidth 

and kurtosis could be important variables for predicting RUL. 

Highly correlated feature pairs (such as q1 and q3) may only 

need to retain one to reduce model complexity and improve pre-

diction accuracy. Fig. 7 shows the Top 5 feature trends. The 

results provide important references for subsequent feature en-

gineering and machine learning model development, aiming to 

enhance the robustness and accuracy of scaled RUL prediction.

 
Fig. 6.  Correlation heatmap of top 10 features of RUL 

 

 

Fig. 7.  Top 5 feature trends of RUL 

 

C. Results and Performance Analysis 

Because the service life of self-lubricating bearings can reach 

more than 100,000, it is very difficult to collect experimental 

data for the entire life cycle. Segmented division for one tested 

self-lubricating bearing is used, 0.7 for training set, 0.15 for val-

idation set and 0.15 for test set. The experimental results are 

shown in Fig 8. For each model, the x-axis represents time in 

seconds, and the y-axis represents the RUL. The predictions of 

the models are shown as red lines, while the true RUL values 

are represented by blue lines. 

Fig. 8 demonstrates the prediction accuracy of each model 

and their ability to track the true RUL values over time, with 

variations observed across different models. Fig. 8 actually 

Feature name Explanation 

mean 
The average value of the signal, reflecting the overall trend of 

the signal. 

std 
The standard deviation of the signal, indicating the fluctuation 

and stability of the signal. 

max 
The maximum amplitude in the signal, used to detect extreme 

abnormal conditions. 

min 
The minimum amplitude in the signal, used to detect extreme 

abnormal conditions. 

skew 
The asymmetry of the signal; large skewness may indicate 

nonlinear faults. 

kurtosis 
The sharpness of the signal; high kurtosis is often associated 

with sudden changes during faults. 

rms 
Root Mean Square value of the signal, typically used to 

represent the vibration or power of the bearing. 

Peak to peak 
The range of signal fluctuations, helpful for analyzing the 

operating amplitude of the bearing. 

Max slope 
The rate of change of the signal, helping to capture rapid 

changes in the bearing’s status. 

q1 
The first quartile of the data, representing the lower distribution 

of the signal. 

q2 
The second quartile (median) of the data, reflecting the middle 

trend of the signal. 

q3 
The third quartile of the data, representing the upper distribution 

of the signal. 

Peak 

frequency 

The primary frequency component of the signal, reflecting the 

vibration characteristics of the bearing. 

Total energy 
The total energy of the signal, measuring the work intensity of 

the bearing. 

Spectral 

entropy 

The complexity or disorder of the signal; high entropy indicates 

high complexity, often related to faults. 

bandwidth 
The frequency range of the signal, helping to analyze the 

breadth of the bearing’s vibration spectrum. 

RMSfrequency 
The RMS frequency in the frequency domain, representing the 

frequency characteristics of the signal. 

Mean 

amplitude 

The average amplitude of the signal, evaluating the energy level 

of the bearing’s operation. 

Amplitude 

variance 

The variance of the amplitude fluctuations, reflecting the 

operational stability of the bearing. 

Frequency 

center of mass 

The overall position of the energy distribution in the frequency 

spectrum, helping to understand the concentration of the 

spectrum. 
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presents a comparative analysis of RUL predictions over a 

50000 circles period for six models: (a) CNN, (b) LSTM, (c) 

ModernTCN, (d) TCN, (e) Transformer, and (f) the proposed 

model. Each subplot displays the predicted RUL (red line) 

against the true RUL (blue line), with the x-axis representing 

time in hours and the y-axis showing RUL values ranging from 

0.0 to 1.0.  

 

Fig. 8.  RUL prediction result of the tested self-lubricating bearing 

 

The subfigures (a)-(e) correspond to: (a)CNN: Displays the 

RUL prediction using CNN. (b)LSTM: Shows the RUL predic-

tion using a long short-term memory (LSTM) network. 

(c)ModernTCN: Represents the RUL prediction using a mod-

ern Temporal Convolutional Network. (d)TCN: Shows the pre-

diction using a Temporal Convolutional Network. (e)Trans-

former: Demonstrates the RUL prediction using a Transformer 

model. (f)Proposed model: Represents MTCAT model for RUL 

prediction. 

All models capture the overall downward trend of RUL over 

time, but they exhibit varying degrees of accuracy. The CNN, 

LSTM, ModernTCN, TCN, and Transformer models display 

noticeable deviations between predicted and true RUL values, 

with frequent over- or under-predictions, particularly in regions 

of rapid RUL changes. In contrast, the proposed model demon-

strates the closest alignment with the true RUL values, main-

taining consistency across the time series and effectively cap-

turing both the trend and fluctuations. The superior perfor-

mance highlights the proposed model's enhanced capability in 

RUL prediction compared to the baseline models. The proposed 

model effectively reduces noise compared to other models, and 

the prediction accuracy is significantly higher than other mod-

els. Table Ⅳ and Fig. 9 show the MAE and RSME of each 

model.  

MAE measures the average error of the prediction and is in-

sensitive to outliers, while RMSE emphasizes large errors by 

squared errors and can more sensitively reflect the impact of 

outliers. 
TABLE Ⅳ 

PREDICTION ERROR COMPARISONS OF THE MODELS 

 
The bar chart illustrates a comparative analysis of MAE and 

RMSE across six different models: CNN, LSTM, ModernTCN, 

TCN, Transformer, and the proposed model. The x-axis repre-

sents the models, while the y-axis denotes the error values, 

ranging from 0.00 to 0.09. The CNN model exhibits the highest 

error, with an MAE of approximately 0.07 and an RMSE of 

0.09, indicating the poorest performance. In contrast, the pro-

posed model demonstrates the lowest error values, with an 

MAE and RMSE both around 0.02, suggesting superior predic-

tive accuracy. The remaining models like LSTM, ModernTCN, 

TCN, and Transformer show moderate performance, with MAE 

values around 0.02–0.03 and RMSE values ranging from 0.03 

to 0.04. These results highlight the proposed model's effective-

ness in minimizing prediction errors compared to established 

models. 

 
Fig. 9.  Model error comparison of the tested bearing 

 

The interpretability of various types of models for prediction 

accuracy is analyzed as follows: 

1) CNN model: convolutional neural network is widely used 

in image and time-series data analysis, which effectively ex-

tracts local features through convolutional layers. Although 

CNN has a great advantage in capturing local features, it does 

not perform as well as other models with more global modelling 

capabilities when dealing with long sequences because it is un-

able to effectively deal with global dependencies in long time-

series. 

2) LSTM model: the LSTM network is good at capturing 

long-time dependencies and is particularly suitable for time-se-

ries prediction. However, LSTM may encounter the problem of 

vanishing or exploding gradients during training and high 

  

(a)CNN (b)LSTM 

  
(c)ModernTCN (d)TCN 

 
 

(e)Transformer (e)proposed model 

 

Model MAE RSME 

CNN 0.0647 0.0892 

LSTM 0.0205 0.0290 

ModernTCN 0.0200 0.0304 

TCN 0.021 0.033 

Transformer 0.0317 0.0385 

Proposed 0.0188 0.0244 
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computational complexity when dealing with high-dimensional 

features. 

3) TCN and ModernTCN model: the models overcome the 

shortcomings of using CNN or LSTM alone to a certain extent, 

but still suffer from higher computational efficiency and model 

complexity. 

4) Original Transformer model: the Transformer model ef-

fectively models global dependencies in sequences through the 

self-attention mechanism, which is particularly suitable for long 

time sequences. However, its learning ability for local features 

is weak, and the computational complexity is also higher when 

long sequences are input. 

Compared to the above traditional models, the proposed 

model exhibits superior performance by combining 

ModernTCN to enhance the ability to capture local features, 

while leveraging on Transformer's global dependency model-

ling capability. Specifically, the RMSE and MAE of the im-

proved model in the RUL prediction task are lower than those 

of the other compared models, indicating a significant improve-

ment in accuracy and generalization ability. 

The computational time for each model was recorded across 

all experimental runs, and the average time per training epoch 

and total training time are now provided. Additionally, the hard-

ware and software configurations used during the experiments 

are clarified in Table Ⅴ. 
TABLE Ⅴ 

COMPUTATIONAL TIME AND EXPERIMENTAL SETTINGS 

 

CASE STUDY Ⅱ: XJTU-SY BEARING EXPERIMENT 

D. XJTU-SY Bearing Dataset 

The XJTU-SY bearing dataset is widely used for bearing 

RUL prediction and health management, containing vibration 

and sensor data under various loads and speeds [29]. It records 

bearing status and operating time, supporting the evaluation of 

machine learning and deep learning models for time-series 

analysis. In order to validate the effectiveness and robustness of 

the model, a different kind of bearing for experiment validation 

is used. Table Ⅴ describes the XJTU-SY dataset and shows the 

detailed information of the RUL task [30]. 

In order to verify the generalization and robustness of the 

model, multiple sets of experiments using bearings under dif-

ferent working conditions as training sets, validation sets, test 

sets, and validation sets are designed. It can effectively prove 

the generalization of MTCAT and solve possible overfitting 

problems. Table Ⅵ lists the different tasks. 

TABLE Ⅵ 

XJTU-SY DATASET DESCRIPTION 

 
TABLE Ⅶ 

RUL DATASET LISTING 

 

E. Feature Analysis 

Signal analysis is performed on the original waveform stream 

file and obtained a total of 32 features in the horizontal and ver-

tical directions, as shown in the Table Ⅶ. 
TABLE Ⅷ 

CALCULATED FEATURES 

 

Model  
Platform 

Specifications  

Training  

Time (h) 

Inference  

Time (s) 

CNN 

NVIDIA RTX 

3090 ,  

Ubuntu 20 .04 ,  

PyTorch 2 .0  

2.5 10.2 

LSTM 4.8 15.6 

ModernTCN 3.2 12.4 

TCN 3.0 11.8 

Transformer 5.5 18.3 

Proposed 

Model 
2.8 11.0 

 

Bearing 

Dataset 

Operating 

condition 

Bearing 

number 

FPT 

(min) 

RUL 

(min) 

 

 

 

 

 

XJTU-SY 

C1 

2100rpm 

12kN 

B1_1 

B1_2 

B1_3 

B1_4 

78 45 

36 125 

58 100 

29 23 

C2 

2250m 

11kN 

B2_1 

B2_2 

B2_3 

B2_4 

452 39 

46 115 

302 231 

121 218 

C3 

2400rpm 

10kN 

B3_1 

B3_2 

B3_3 

B3_4 

2346 192 

340 30 

1417 98 

10 104 

 

Task Training Validation Testing 

A1 B1_1 ~ B1_4 B2_1 B2_2 

A2 B1_1 ~ B1_4 B2_2 B2_3 

A3 B2_1 ~ B2_4 B3_1 B3_3 

A4 B2_1 ~ B2_4 B3_1 B3_4 

A5 B3_1 ~ B3_4 B1_1 B1_2 

A6 B3_1 ~ B3_4 B1_2 B1_4 

 

 

Label 

Feature 

(Vertical and 

Horizontal signal) 

Explanation 

 

 
F1, F2 maximum 

Maximum value of the vertical and 

horizontal vibration signals. 

 

 
F3, F4 minimum 

Minimum value of the vertical and 

horizontal vibration signals. 

 

 
F5, F6 mean 

Mean value of the vertical and 

horizontal vibration signals. 

 

 

F7, F8 peak_to_peak 

Peak-to-peak value of the vertical 

and horizontal vibration signals 

(dynamic range). 

 

 

F9, F10 variance 

Variance of the vertical and 

horizontal vibration signals, 

indicating the spread of data points. 

 

 

F11, F12 std_dev 

Standard deviation of the vertical and 

horizontal vibration signals, 

representing deviation from mean. 

 

 

F13, F14 rms 

Root Mean Square value of the 

vertical and horizontal vibration 

signals, quantifying the signal power. 

 

 

F15, F16 skewness 

Skewness of the vertical and 

horizontal vibration signals, 

indicating asymmetry of the signal's 

distribution. 

 

 

F17, F18 kurtosis 

Kurtosis of the vertical and 

horizontal vibration signals, 

indicating the "tailedness" of the 

signal. 

 

 

F19, F20 mean_absolute 

Mean absolute value of the vertical 

and horizontal vibration signals, 

measuring signal magnitude. 

 

 

F21, F22 
mean_absolute_squa

re 

Mean square of the absolute value of 

the vertical and horizontal vibration 

signals. 

 

 

F23, F24 impulse_factor 

Impulse factor of the vertical and 

horizontal vibration signals, 

identifying sharp spikes in signals. 

 

 

F25, F26 crest_factor 

Crest factor of the vertical and 

horizontal vibration signals, 

identifying peaks relative to noise. 

 

 

F27, F28 margin_factor 

Margin factor of the vertical and 

horizontal vibration signals, 

indicating abnormal signal behavior. 
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For features analysis, trendiness is the consistency of the 

trend of the feature value changing over time and the RUL 

change trend. Monotonicity is the consistency of the direction 

of the feature value change, that is, whether it always increases 

or always decreases. Predictability is the degree of correlation 

between the feature value and the RUL. Fig. 10. shows the score 

of the features of task A1, derived from acoustic emission and 

torque signals collected under simulated operating conditions. 

It displays 19 features (F0 to F31) with their scores (0 to 1.4) 

based on prognosability (dark blue) and monotonicity & trend-

ability (light blue), with a red dashed line separating the top 16 

features (e.g., F29 F32, F19) for their high predictive relevance. 

F. Results and Performance Analysis 

The RMSE and MAE are used to measure the quantitative 

prediction performance of the proposed model. Two sets of task 

results are selected for display and used the following models 

as control groups: CNN, LSTM, TCN, ModernTCN, Trans-

former Fig. 11 and Fig. 12 show the RUL prediction results of 

A1 and A2 respectively. In the plots, the red predicted RUL 

values are compared to the true RUL values (black line), and 

the prediction error (blue shaded area) shows the range within 

which the model's predictions are expected to vary. The plot 

helps visualize the accuracy and uncertainty of the model’s 

RUL predictions.  

Fig. 11 and Fig. 12 present the RUL prediction results with 

error bounds for Task A1 and Task A2, respectively, across six 

models: (a) CNN, (b) LSTM, (c) ModernTCN, (d) TCN, (e) 

Transformer, and (f) the proposed model. Each subplot illus-

trates the true RUL (black line), predicted RUL (red line), 90% 

confidence interval (CI) of the predicted RUL (light blue 

shaded area), and prediction error (blue shaded area) over time  

in cycles, with Task A1 spanning 70 cycles and Task A2 ex-

tending to 175 cycles.  

 

 
Fig. 10.  Selected features based on the score 

 

The y-axis represents RUL values from 1.0 — 0.0. In both 

tasks, the CNN, LSTM, ModernTCN, TCN, and Transformer 

models exhibit significant deviations between predicted and 

true RUL, with wider 95% CI bounds and larger prediction er-

rors, particularly in regions of rapid RUL decline. Notably, the 

ModernTCN and TCN models show the most pronounced fluc-

tuations and overestimations in both tasks. Some model predicts 

wrong RUL values from 0.8 — 0.0. 

In contrast, the proposed model consistently demonstrates 

the closest alignment with the true RUL, with narrower 90% CI 

bounds and minimal prediction errors across both tasks, indi-

cating superior predictive accuracy and reliability in RUL esti-

mation. The proposed model outperforms the CNN, LSTM, 

Modern TCN, TCN, and Transformer models in terms of both 

prediction accuracy and error minimization. It shows a better fit 

to the true RUL values, with reduced prediction errors and more 

stable performance across the entire dataset. The other models, 

while performing relatively well, especially Transformer and 

Modern TCN, still exhibit greater fluctuation in the predictions 

and higher prediction errors. 

Compared with the above traditional models, the improved 

Transformer-ModernTCN model enhances the ability to cap-

ture local features by combining   conventional network, and at 

the same time, with the help of Transformer’s global depend-

ency modelling capabilities, it shows better generalization and 

robustness. 

IV. CONCLUSION 

For the prediction of RUL of aerospace self-lubricating bear-

ings, this study proposes a RUL prediction model based on the 

MTCAT model. MTCAT by combining ModernTCN and en-

hance local feature capture capability and using Transformer’s 

global dependency modelling capability. MTCAT effectively 

improves the model’s performance in long time-series predic-

tion tasks. Through the constructed full life cycle wear test rig 

of self-lubricated bearings, the AE signal features are extracted 

to get the full life cycle dataset for validation, and compared 

with other single deep learning models, the following conclu-

sions can be obtained: 

 
Fig. 11.  Task A1 RUL prediction result 

 

Based on multi-channel signals, multi-scale data based on ex-

perts' experience is constructed, and the features of acoustic 

emission signals and torque signals in the tiny scale changes of 

self-lubricated bearings are extracted by FFT and WT, and the  

 

  

 (a) CNN (b) LSTM 

  

 (c) ModernTCN  (d) TCN 

  

(e) Transformer (f) proposed model 
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Fig. 12.  Task A2 RUL prediction result 

 

tiny vibration changes and longtime stress accumulation are an-

alyzed, and compared with the commonly used statistical fea-

tures, the dataset construction model proposed has a non-redun-

dancy and better trend. 

In the RUL prediction stage, MTCAT model is proposed, 

ModernTCN can handle dependencies on different time scales 

through its extended convolutional kernel sensing field, and the 

attention mechanism can dynamically adjust the multi-scale in-

formation. Transformer makes full use of the complex data fea-

tures, and the global modelling capability can in turn helps to 

capture the long-time dependencies, the model does not rely on 

empirical formulas or physical models, and digs deeper into the 

depth features of the wear process of self-lubricating bearings, 

which is more accurate and has a smaller error margin through 

MTCAT in comparison with other single algorithmic models. 

In the future research, the method of combining physical con-

straints will be considered to construct a model by introducing 

a combination of physical and data-driven models [31], utiliz-

ing the attention mechanism and capturing local features in the 

data, while ensuring that the model's outputs follow the physical 

a priori knowledge, to enhance the innovation and practical ap-

plication value of the model, thus improving the accuracy of the 

remaining life prediction results. 
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